首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reducing the NOx emissions from Diesel engines remains as a challenging issue as the emission standards for Diesel engine powered vehicles have become more stringent than ever before. Urea-based selective catalytic reduction (SCR) systems have emerged as a promising technique in addressing this issue. However, the SCR performance in terms of NOx reduction and ammonia slip continues as an ongoing challenge due to the engine exhaust gas temperature variations, Diesel emission characteristics (especially high NO/NO2 ratio), and immature SCR controls. The purpose of this study is to improve the SCR performance by feeding the SCR system with exhaust gas having the desired NO/NO2 ratio. The proposed complete active NO/NO2 ratio control consists of a low-level adaptive NO/NO2 ratio controller and a high-level nonlinear soot mass controller. The low-level controller utilizes the pre-SCR catalysts such as Diesel oxidation catalyst (DOC) to convert part of NO into NO2, while the high-level controller was designed and coordinated with the low-level controller to avoid NO2 reduction through the Diesel particulate filter (DPF). Simulation and experimental results show that the proposed active NO/NO2 ratio control has the potentials of regulating the NO/NO2 ratio to the desired value and thus considerably improving the SCR performance. Simulation results also illustrate that the active NO/NO2 ratio control can enable the SCR system size reduction by a half without a significant sacrifice on the overall tailpipe emission control performance. Such an integrated aftertreatment system control can be instrumental in reducing the cost and improving the performance of SCR systems, especially in low-temperature operations.  相似文献   

2.
Metal N-heterocyclic carbenes (M-NHCs) on the pore walls of a porous metal-organic framework (MOF) can be used as active sites for efficient organic catalysis. Traditional approaches that need strong alkaline reagents or insoluble Ag2O are not, however, suitable for the incorporation of NHCs on the backbones of MOFs because such reagents could destroy their frameworks or result in low reactivity. Accordingly, development of facile strategies toward functional MOFs with covalently bound M-NHCs for catalysis is needed. Herein, we describe the development of a general and facile approach to preparing MOFs with covalently linked active M-NHC (M = Pd, Ir) single-site catalysts by using a soluble Ag salt AgOC(CF3)3 as the source and subsequent transmetalation. The well-defined M-NHC-MOF (M = Pd, Ir) catalysts obtained in this way have shown excellent catalytic activity and stability in Suzuki reactions and hydrogen transfer reactions. This provides a general and facile strategy for anchoring functional M-NHC single-site catalysts onto functionalized MOFs for different reactions.  相似文献   

3.
Understanding the correlation between exposed surfaces and performances of controlled nanocatalysts can aid effective strategies to enhance electrocatalysis, but this is as yet unexplored for the nitrogen reduction reaction (NRR). Here, we first report controlled synthesis of well-defined Pt3Fe nanocrystals with tunable morphologies (nanocube, nanorod and nanowire) as ideal model electrocatalysts for investigating the NRR on different exposed facets. The detailed electrocatalytic studies reveal that the Pt3Fe nanocrystals exhibit shape-dependent NRR electrocatalysis. The optimized Pt3Fe nanowires bounded with high-index facets exhibit excellent selectivity (no N2H4 is detected), high activity with NH3 yield of 18.3 μg h−1 mg−1cat (0.52 μg h−1 cm−2ECSA; ECSA: electrochemical active surface area) and Faraday efficiency of 7.3% at −0.05 V versus reversible hydrogen electrode, outperforming the {200} facet-enclosed Pt3Fe nanocubes and {111} facet-enclosed Pt3Fe nanorods. They also show good stability with negligible activity change after five cycles. Density functional theory calculations reveal that, with high-indexed facet engineering, the Fe-3d band is an efficient d-d coupling correlation center for boosting the Pt 5d-electronic exchange and transfer activities towards the NRR.  相似文献   

4.
Identification of the real catalytic site in CO2 reduction reaction (CO2RR) is critical for the rational design of catalysts and the understanding of reactive mechanisms. In this study, the catalytic activity of pyridine-containing materials was for the first time structurally demonstrated in CO2RR by crystalline supramolecular coordination compounds model system. The system consists of three stable supramolecular coordination compounds (Ni-TPYP, Ni-TPYP-1 and Ni-TPP) with different numbers (4, 2 and 0) of active pyridine groups (i.e. uncoordinated pyridine nitrogen atoms). The electrocatalytic test results show that with the decrease of the number of active pyridine groups, the CO2RR performance is gradually reduced, mainly showing the reduction of highest FECO (99.8%, 83.7% and 25.6%, respectively). The crystallographic, experimental and theoretical evidences prove that the CO2RR activity is more likely derived from uncoordinated pyridine nitrogen than the electrocatalytic inert metal nickel in porphyrin center. This work serves as an important case study for the identification of electrocatalytic activity of pyridine-containing materials in CO2RR by simple supramolecular model system.  相似文献   

5.
The minimized diffusion limitation and completely exposed strong acid sites of the ultrathin zeolites make it an industrially important catalyst especially for converting bulky molecules. However, the structure-controlled and large-scale synthesis of the material is still a challenge. In this work, the direct synthesis of the single-layer MWW zeolite was demonstrated by using hexamethyleneimine and amphiphilic organosilane as structure-directing agents. Characterization results confirmed the formation of the single-layer MWW zeolite with high crystallinity and excellent thermal/hydrothermal stability. The formation mechanism was rigorously revealed as the balanced rates between the nucleation/growth of the MWW nanocrystals and the incorporation of the organosilane into the MWW unit cell, which is further supported by the formation of MWW nanosheets with tunable thickness via simply changing synthesis conditions. The commercially available reagents, well-controlled structure and the high catalytic stability for the alkylation of benzene with 1-dodecene make it an industrially important catalyst.  相似文献   

6.
Aprotic lithium–oxygen (Li–O2) batteries are receiving intense research interest by virtue of their ultra-high theoretical specific energy. However, current Li–O2 batteries are suffering from severe barriers, such as sluggish reaction kinetics and undesired parasitic reactions. Recently, molecular catalysts, i.e. redox mediators (RMs), have been explored to catalyse the oxygen electrochemistry in Li–O2 batteries and are regarded as an advanced solution. To fully unlock the capability of Li–O2 batteries, an in-depth understanding of the catalytic mechanisms of RMs is necessary. In this review, we summarize the working principles of RMs and their selection criteria, highlight the recent significant progress of RMs and discuss the critical scientific and technical challenges on the design of efficient RMs for next-generation Li–O2 batteries.  相似文献   

7.
It is highly desirable to design hollow structures with multi-scale functions by mimicking cells for the construction of micro/nanoreactors. Herein, we report the construction of hollow-structured submicrometer-photoreactors with bimetallic catalysts loaded within mesoporous silicas. The synthesis parameters are optimized to study the evolution of hollow structure through hydrothermal treatment and an ‘adhesive-contraction’ formation mechanism is proposed. AuPt@HMZS catalysts exhibited a broader absorbance region under visible light and the adsorption edge displayed a red-shift, indicating the strong metal–metal interactions at the alloy interface. The reaction performance of the coupled Au-Pt catalysts can be tuned to achieve excellent catalytic activity in cinnamyl alcohol oxidation to cinnamic acid for 3.1 mmol g−1 with 99% selectivity. The proposed strategy to build hollow structures as multifunctional micro/nanoreactors is promising for the design of high-performance and sustainable catalysts for chemical synthesis.  相似文献   

8.
Development of novel catalysts for nitrogen reduction at ambient pressures and temperatures with ultrahigh ammonia (NH3) yield and selectivity is challenging. In this work, an atomic catalyst with separated Pd atoms on graphdiyne (Pd-GDY) was synthesized, which shows fascinating electrocatalytic properties for nitrogen reduction. The catalyst has the highest average NH3 yield of 4.45 ± 0.30 mgNH3 mgPd−1 h−1, almost tens of orders larger than for previously reported catalysts, and 100% reaction selectivity in neutral media. Pd-GDY exhibits almost no decreases in NH3 yield and Faradaic efficiency. Density functional theory calculations show that the reaction pathway prefers to perform at the (Pd, C1, C2) active area because of the strongly coupled (Pd, C1, C2), which elevates the selectivity via enhanced electron transfer. By adjusting the p–d coupling accurately, reduction of self-activated nitrogen is promoted by anchoring atom selection, and side effects are minimized.  相似文献   

9.
SCR工艺是目前火电厂的主要采用的烟气脱硝技术,催化剂是SCR脱硝工艺的重点内容,催化剂性能直接关系到脱硝效率。文章简述了SCR脱硝技术的概念及原理,分析了影响SCR法脱硝效率的主要因素,并针对影响因素提出了一些控制措施。  相似文献   

10.
Exploring stable clusters to understand structural evolution from atoms to macroscopic matter and to construct new materials is interesting yet challenging in chemistry. Utilizing our newly developed deep-ultraviolet laser ionization mass spectrometry technique, here we observe the reactions of neutral cobalt clusters with oxygen and find a very stable cluster species of Co13O8 that dominates the mass distribution in the presence of a large flow rate of oxygen gas. The results of global-minimum structural search reveal a unique cubic structure and distinctive stability of the neutral Co13O8 cluster that forms a new class of metal oxides that we named as ‘metalloxocubes’. Thermodynamics and kinetics calculations illustrate the structural evolution from icosahedral Co13 to the metalloxocube Co13O8 with decreased energy, enhanced stability and aromaticity. This class of neutral oxygen-passivated metal clusters may be an ideal candidate for genetic materials because of the cubic nature of the building blocks and the stability due to cubic aromaticity.  相似文献   

11.
Because of their low cost, natural abundance, environmental benignity, plentiful polymorphs, good chemical stability and excellent optical properties, TiO2 materials are of great importance in the areas of physics, chemistry and material science. Much effort has been devoted to the synthesis of TiO2 nanomaterials for various applications. Among them, mesoporous TiO2 materials, especially with hierarchically porous structures, show great potential owing to their extraordinarily high surface areas, large pore volumes, tunable pore structures and morphologies, and nanoscale effects. This review aims to provide an overview of the synthesis and applications of hierarchically mesoporous TiO2 materials. In the first section, the general synthetic strategies for hierarchically mesoporous TiO2 materials are reviewed. After that, we summarize the architectures of hierarchically mesoporous TiO2 materials, including nanofibers, nanosheets, microparticles, films, spheres, core-shell and multi-level structures. At the same time, the corresponding mechanisms and the key factors for the controllable synthesis are highlighted. Following this, the applications of hierarchically mesoporous TiO2 materials in terms of energy storage and environmental protection, including photocatalytic degradation of pollutants, photocatalytic fuel generation, photoelectrochemical water splitting, catalyst support, lithium-ion batteries and sodium-ion batteries, are discussed. Finally, we outline the challenges and future directions of research and development in this area.  相似文献   

12.
Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g–1 at 1 C (1 C = 335 mA g–1) at a voltage window of 1.0–3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g–1, respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.  相似文献   

13.
Molybdenum dinitrogen complexes supported by monodentate arylsilylamido ligand, [Ar(Me3Si)N]3MoN2Mg(THF)2[N(SiMe3)Ar] (5) and [Ar(Me3Si)N]3MoN2SiMe3 (6) (Ar = 3,5-Me2C6H3) were synthesized and structurally characterized, and proved to be effective catalysts for the disproportionation of cyclohexadienes and isomerization of terminal alkenes. The 1H NMR spectrum suggested that the bridging nitrogen ligand remains intact during the catalytic reaction, indicating possible catalytic ability of the Mo-N=N motif.  相似文献   

14.
N-heterocyclic phosphines (NHPs) have recently emerged as a new group of promising catalysts for metal-free reductions, owing to their unique hydridic reactivity. The excellent hydricity of NHPs, which rivals or even exceeds those of many metal-based hydrides, is the result of hyperconjugative interactions between the lone-pair electrons on N atoms and the adjacent σ*(P–H) orbital. Compared with the conventional protic reactivity of phosphines, this umpolung P–H reactivity leads to hydridic selectivity in NHP-mediated reductions. This reactivity has therefore found many applications in the catalytic reduction of polar unsaturated bonds and in the hydroboration of pyridines. This review summarizes recent progress in studies of the reactivity and synthetic applications of these phosphorus-based hydrides, with the aim of providing practical information to enable exploitation of their synthetically useful chemistry.  相似文献   

15.
IntroductionBlood gas analysis (BGA) is an essential test used for years to provide vital information in critically ill patients. However, the instability of the blood gases is a problem. We aimed to evaluate time and temperature effects on blood gas stability.Materials and methodsArterial blood was collected from 20 patients into syringes. Following BGA for baseline, syringes were divided into groups to stand at 4°C and 22°C for 30, 60, 90, 120 minutes. All were tested for pH, partial pressure of carbon dioxide (pCO2), partial pressure of oxygen (pO2), oxygen saturation (sO2), oxyhemoglobin (O2Hb), sodium, potassium, glucose, lactate, oxygen tension at 50% hemoglobin saturation (p50), and bicarbonate. A subgroup analysis was performed to detect the effect of air on results during storage. Percentage deviations were calculated and compared against the preset quality specifications for allowable total error.ResultsAt 4°C, pO2 was the least stable parameter. At 22°C, pO2 remained stable for 120 min, pH and glucose for 90 min, lactate and pCO2 for 60 min. Glucose and lactate were stable when chilled. Air bubbles interfered pO2 regardless of temperatures, whereas pCO2 increased significantly at 22°C after 30 min, and pH decreased after 90 min. Bicarbonate, sO2, O2Hb, sodium, and potassium were the unaffected parameters.ConclusionsCorrect BGA results are essential, and arterial sample is precious. Therefore, if immediate analysis cannot be performed, up to one hour, syringes stored at room temperature will give reliable results when care is taken to minimize air within the blood gas specimen.  相似文献   

16.
Most metal–organic frameworks (MOFs) hardly maintain their physical and chemical properties after exposure to alkaline aqueous solutions, thus precluding their use as potential electrode materials for electrochemical energy storage devices. Here, we present the design and synthesis of a highly alkaline-stable metal oxide@MOF composite, Co3O4 nanocube@Co-MOF (Co3O4@Co-MOF), via a controllable and facile one-pot hydrothermal method under highly alkaline conditions. The obtained composite possesses exceptional alkaline stability, retaining its original structure in 3.0 M KOH for at least 15 days. Benefitting from the exceptional alkaline stability, unique structure, and larger surface area, the Co3O4@Co-MOF composite shows a specific capacitance as high as 1020 F g−1 at 0.5 A  g−1 and a high cycling stability with only 3.3% decay after 5000 cycles at 5 A g−1. The as-constructed solid-state flexible device exhibits a maximum energy density of 21.6 mWh cm−3.  相似文献   

17.
Many optimization strategies have been employed to stabilize zinc anodes of zinc-ion batteries (ZIBs). Although these commonly used strategies can improve anode performance, they simultaneously induce specific issues. In this study, through the combination of structural design, interface modification, and electrolyte optimization, an ‘all-in-one’ (AIO) electrode was developed. Compared to the three-dimensional (3D) anode in routine liquid electrolytes, the new AIO electrode can greatly suppress gas evolution and the occurrence of side reactions induced by active water molecules, while retaining the merits of a 3D anode. Moreover, the integrated AIO strategy achieves a sufficient electrode/electrolyte interface contact area, so that the electrode can promote electron/ion transfer, and ensure a fast and complete redox reaction. As a result, it achieves excellent shelving-restoring ability (60 hours, four times) and 1200 cycles of long-term stability without apparent polarization. When paired with two common cathode materials used in ZIBs (α-MnO2 and NH4V4O10), full batteries with the AIO electrode demonstrate high capacity and good stability. The strategy of the ‘all-in-one’ architectural design is enlightened to solve the issues of zinc anodes in advanced Zn-based batteries.  相似文献   

18.
We report on low-cost fabrication and high-energy density of full-cell lithium-ion battery (LIB) models. Super-hierarchical electrode architectures of Li2SiO3/TiO2@nano-carbon anode (LSO.TO@nano-C) and high-voltage olivine LiMnPO4@nano-carbon cathode (LMPO@nano-C) are designed for half- and full-system LIB-CR2032 coin cell models. On the basis of primary architecture-power-driven LIB geometrics, the structure keys including three-dimensional (3D) modeling superhierarchy, multiscale micro/nano architectures and anisotropic surface heterogeneity affect the buildup design of anode/cathode LIB electrodes. Such hierarchical electrode surface topologies enable continuous in-/out-flow rates and fast transport pathways of Li+-ions during charge/discharge cycles. The stacked layer configurations of pouch LIB-types lead to excellent charge/discharge rate, and energy density of 237.6 Wh kg−1. As the most promising LIB-configurations, the high specific energy density of hierarchical pouch battery systems may improve energy storage for long-driving range of electric vehicles. Indeed, the anisotropic alignments of hierarchical electrode architectures in the large-scale LIBs provide proof of excellent capacity storage and outstanding durability and cyclability. The full-system LIB-CR2032 coin cell models maintain high specific capacity of ∼89.8% within a long-term life period of 2000 cycles, and average Coulombic efficiency of 99.8% at 1C rate for future configuration of LIB manufacturing and commercialization challenges.  相似文献   

19.
The mathematical modeling of most physical systems, such as aerospace systems, heat processes, telecommunication systems, transmission lines and chemical reactors, results in complex high order models. The complexity of the models imposes a lot of difficulties in analysis, simulation and control designs. Several analytical model reduction techniques have been proposed in literature over the past few decades to reduce these difficulties. However, most of the optimal techniques follow computationally demanding, time consuming, iterative procedures that usually result in non-robustly stable models with poor frequency response resemblance to the original high order model in some frequency ranges. Genetic Algorithm (GA) has proved to be an excellent optimization tool in the past few years. Therefore, the aim of this paper will be to use GA to solve H2 and H norm model reduction problems, and help obtain globally optimized nominal models.  相似文献   

20.
Metal halide perovskites possess unique atomic and electronic configurations that endow them with high defect tolerance and enable high-performance photovoltaics and optoelectronics. Perovskite light-emitting diodes have achieved an external quantum efficiency of over 20%. Despite tremendous progress, fundamental questions remain, such as how structural distortion affects the optical properties. Addressing their relationships is considerably challenging due to the scarcity of effective diagnostic tools during structural and property tuning as well as the limited tunability achievable by conventional methods. Here, using pressure and chemical methods to regulate the metal off-centering distortion, we demonstrate the giant tunability of photoluminescence (PL) in both the intensity (>20 times) and wavelength (>180 nm/GPa) in the highly distorted halide perovskites [CH3NH3GeI3, HC(NH2)2GeI3, and CsGeI3]. Using advanced in situ high-pressure probes and first-principles calculations, we quantitatively reveal a universal relationship whereby regulating the level of off-centering distortion towards 0.2 leads to the best PL performance in the halide perovskites. By applying this principle, intense PL can still be induced by substituting CH3NH3+ with Cs+ to control the distortion in (CH3NH3)1-xCsxGeI3, where the chemical substitution plays a similar role as external pressure. The compression of a fully substituted sample of CsGeI3 further tunes the distortion to the optimal value at 0.7 GPa, which maximizes the emission with a 10-fold enhancement. This work not only demonstrates a quantitative relationship between structural distortion and PL property of the halide perovskites but also illustrates the use of knowledge gained from high-pressure research to achieve the desired properties by ambient methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号