首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   7篇
教育   256篇
科学研究   34篇
各国文化   2篇
体育   43篇
文化理论   2篇
信息传播   25篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   5篇
  2019年   17篇
  2018年   21篇
  2017年   13篇
  2016年   20篇
  2015年   13篇
  2014年   14篇
  2013年   89篇
  2012年   12篇
  2011年   15篇
  2010年   7篇
  2009年   6篇
  2008年   14篇
  2007年   13篇
  2006年   7篇
  2005年   13篇
  2004年   7篇
  2003年   10篇
  2002年   9篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1960年   1篇
排序方式: 共有362条查询结果,搜索用时 31 毫秒
121.
Abstract

The Youth Olympic Games (YOG) were established as a new event in the Olympic family at a session of the International Olympic Committee (IOC) in July 2007. This paper illuminates why and how this new event was established. It turns out that the formally unanimous decision to establish the event was taken in a contested terrain. Much attention has been put on the agency of the then president of the IOC, Jacques Rogge, and his role as an institutional leader is discussed in a context where the pressure of tradition is strong. Securing the character of an organization which has become an institution is a central task for institutional leadership, and developing an ‘external mechanism’ or a new subfield like the YOG is a way to explore this. Appealing to original ideas and values, such as the educational role of the games, is of importance but would in itself not be enough to convince the fellow members of the IOC’s decision-making bodies. Acting politically as a ‘statesman’ with the skills and ability to manoeuvre among different interests and wills was equally a necessity to convince the decision makers to welcome this new event into the Olympic movement.  相似文献   
122.
Bipolar membranes (BMs) have interesting applications within the field of bioelectronics, as they may be used to create non-linear ionic components (e.g., ion diodes and transistors), thereby extending the functionality of, otherwise linear, electrophoretic drug delivery devices. However, BM based diodes suffer from a number of limitations, such as narrow voltage operation range and/or high hysteresis. In this work, we circumvent these problems by using a novel polyphosphonium-based BM, which is shown to exhibit improved diode characteristics. We believe that this new type of BM diode will be useful for creating complex addressable ionic circuits for delivery of charged biomolecules.Combined electronic and ionic conduction makes organic electronic materials well suited for bioelectronics applications as a technological mean of translating electronic addressing signals into delivery of chemicals and ions.1 For complex regulation of functions in cells and tissues, a chemical circuit technology is necessary in order to generate complex and dynamic signal gradients with high spatiotemporal resolution. One approach to achieve a chemical circuit technology is to use bipolar membranes (BMs), which can be used to create the ionic equivalents of diodes2, 3, 4, 5 and transistors.6, 7, 8 A BM consists of a stack of a cation- and an anion-selective membrane, and functions similar to the semiconductor PN-junction, i.e., it offers ionic current rectification9, 10 (Figure (Figure1a).1a). The high fixed charge concentration in a BM configuration make them more suited in bioelectronic applications as compared to other non-linear ionic devices, such as diodes constructed from surface charged nanopores11 or nanochannels,12 as the latter devices typically suffers from reduced performance at elevated electrolyte concentration (i.e., at physiological conditions) due to reduced Debye screening length.13 However, a unique property of most BMs, as compared to the electronic PN-junction and other ionic diodes, is the electric field enhanced (EFE) water dissociation effect.10, 14 This occurs above a threshold reverse bias voltage, typically around −1 V, as the high electric field across the ion-depleted BM interface accelerates the forward reaction rate of the dissociation of water into H+ and OH ions. As these ions migrate out from the BM, there will be an increase in the reverse bias current. The EFE water dissociation is a very interesting effect and is commonly used in industrial electrodialysis applications,15 where highly efficient water dissociating BMs are being researched.16 Also, BMs have also been utilized to generate H+ and OH ions in lab-on-a-chip applications.2, 17 However, the EFE water dissociation effect diminishes the diode property of BMs when operated outside the ±1 V window, which is unwanted in, for instance, chemical circuits and addressing matrices for delivery of complex gradients of chemical species. The effect can be suppressed by incorporating a neutral electrolyte inside the BM,10, 18 for instance, poly(ethylene glycol) (PEG).2, 6, 7 However, as previously reported,2 the PEG volume will introduce hysteresis when switching from forward to reverse bias, due to its ability to store large amounts of charges. This was circumvented by ensuring that only H+ and OH are present in the diode, which recombines into water within the PEG volume. Such diodes are well suited as integrated components in chemical circuits for pH-regulation, due to the in situ formed H+ and OH, but are less attractive if, for instance, other ions, e.g., biomolecules, are to be processed or delivered in and from the circuit. Furthermore, a PEG electrolyte introduces additional patterning layers, making device downscaling more challenging. This is undesired when designing complex, miniaturized, and large-scale ionic circuits. Thus, there is an interest in BM diodes that intrinsically do not exhibit any EFE water dissociation, are easy to miniaturize, and that turn off at relatively high speeds. It has been suggested that tertiary amines in the BM interface are important for efficient EFE water dissociation,19, 20, 21 as they function as a weak base and can therefore catalyze dissociation of water by accepting a proton. For example, anion-selective membranes that have undergone complete methylation, converting all tertiary amines to quaternary amines, shows no EFE water dissociation,19 although this effect was not permanent, as the quaternization was reversed upon application of a current. Similar results were found for anion-selective membranes containing alkali-metal complexing crown ethers as fixed charges.21 Also, EFE water dissociation was not observed or reduced in BMs with poor ion selectivity, for example, in BMs with low fixed-charge concentration5 or with predominantly secondary and tertiary amines in the anion-selective membrane,22 as the increased co-ion transport reduces the electric field at the BM interface. However, due to decreased ion selectivity, these membranes show reduced rectification. In this work, we present a non-amine based BM diode that avoids EFE water dissociation, enables easy miniaturization, and provides fast turn-off speeds and high rectification.Open in a separate windowFigure 1(a) Ionic current rectification in a BM. In forward bias, mobile ions migrate towards the interface of the BM. The changing ion selectivity causes ion accumulation, resulting in high ion concentration and high conductivity. At high ion concentration, the selectivity of the membranes fails (Donnan exclusion failure), and ions start to pass the BM. In reverse bias, the mobile ions migrate away from the BM, eventually giving a zone with low ion concentration and low conductivity. Reverse bias can cause EFE water dissociation, producing H+ and OH- ions. (b) Chemical structures of PSS, qPVBC, and PVBPPh3. (c) The device used to characterize the BMs and the BM1A, BM2A, and BM1P designs. The BM interfaces are 50 × 50 μm.An anion-selective phosphonium-based polycation (poly(vinylbenzyl chloride) (PVBC) quaternized by triphenylphospine, PVBPPh3) was synthesized and compared to the ammonium-based polycation (PVBC quaternized by dimethylbenzylamine, qPVBC) previously used in BM diodes2 and transistors,7, 8 when included in BM diode structures together with polystyrenesulfonate (PSS) as the cation-selective material (Figure (Figure1b).1b). Three types of BM diodes were fabricated using standard photolithography patterning (Figure (Figure1c),1c), either with qPVBC (BM1A and BM2A) or PVBPPh3 (BM1P) as polycation and either with (BM2A) or without PEG (BM1A and BM1P). Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) electrodes covered with aqueous electrolytes were used to convert electronic input signals into ionic currents through the BMs, according to the redox reaction PEDOT+:PSS + M+ + e ↔ PEDOT0 + M+:PSS.The rectifying behavior of the diodes was evaluated using linear sweep voltammetry (Figure (Figure2).2). The BM1A diode exhibited an increase in the reverse bias current for voltages lower than −1 V, a typical signature of EFE water dissociation,10, 14 which decreased the current rectification at ±4 V to 6.14. No such deviation in the reverse bias current was observed for BM2A and BM1P, which showed rectification ratios of 751 and 196, respectively. In fact, for BM1P, no evident EFE water dissociation was observed even at −40 V (see inset of Figure Figure2).2). Thus, the PVBPPh3 polycation allows BM diodes to operate at voltages beyond the ±1 V window with maintained high ion current rectification.Open in a separate windowFigure 2Linear sweep voltammetry from −4 to +4 V (25 mV/s) for the BM diodes. The inset shows BM1P scanning from −40 V to +4 V (250 mV/s).The dynamic performance of the diodes was tested by applying a square wave pulse from reverse bias to a forward bias voltage of 4 V with 5–90 s pulse duration (Figure (Figure3).3). To access the amount of charge injected and extracted during the forward bias and subsequent turn off, the current through the device was integrated. For BM2A, we observed that the fall time increased with the duration of the forward bias pulse. This hysteresis is due to the efficient storage of ions in the large PEG volume, with no ions crossing the BM due to Donnan exclusion failure.2 As a result, during the initial period of the return to reverse bias, a large amount of charge needs to be extracted in order to deplete the BM. After a 90 s pulse, 90.6% of the injected charge during the forward bias was extracted before turn-off. This may be contrasted with BM1P, where the fall time is hardly affected by the pulse duration, and the extracted/injected ratio is only 15.4% for a 90 s pulse. For this type of BM, the interface quickly becomes saturated with ions during forward bias, leading to Donnan exclusion failure and transport of ions across the BM.4 Thus, less charge needs to be extracted to deplete the BM, allowing for faster fall times and significantly reduced hysteresis.Open in a separate windowFigure 3Switching characteristics (5, 10, 20, 30, 60, or 90 s pulse) and ion accumulation (at 90 s pulse) of the BM2A and BM1P diodes. BM1A showed similar characteristics as BM1P when switched at ±1V (see supplementary material).24Since the neutral electrolyte is no longer required to obtain high ion current rectification over a wide potential range, the size of the BM can be miniaturized. This translates into higher component density when integrating the BM diode into ionic/chemical circuits. A miniaturized BM1P diode was constructed, where the interface of the BM was shrunk from 50 μm to 10 μm. The 10 μm device showed similar IV and switching characteristics as before (Figure (Figure4),4), but with higher ion current rectification ratio (over 800) and decreased rise/fall times (corresponding to 90%/–10% of forward bias steady state) from 10 s/12.5 s to 4 s/4 s. Since the overlap area is smaller, a probable reason for the faster switching times is the reduced amount of ions needed to saturate and deplete the BM interface. In comparison to our previous reported low hysteresis BM diode,2 this miniaturized polyphosphonium-based devices shows the same rise and fall times but increased rectification ratio.Open in a separate windowFigure 4(a) Linear sweep voltammetry and (b) switching performance of a BM1P diode with narrow junction.In summary, by using polyphosphonium instead of polyammonium as the polycation in BM ion diodes the EFE water dissociation can be entirely suppressed over a large operational voltage window, supporting the theory that a weak base, such as a tertiary amine, is needed for efficient EFE water dissociation.17, 18 As no additional neutral layer at the BM interface is needed, ion diodes that operate outside the usual EFE water dissociation window of ±1 V can be constructed using less active layers, fewer processing steps and with relaxed alignment requirement as compared to polyammonium-based devices. This enables the fabrication of ion rectification devices with an active interface as low as 10 μm. Furthermore, the exclusion of a neutral layer improves the overall dynamic performance of the BM ion diode significantly, as there is less hysteresis due to ion accumulation. Previously, the hysteresis of BM ion diodes has been mitigated by designing the diode so that only H+ and OH enters the BM, which then recombines into water.2 Such diodes also show high ion current rectification ratio and switching speed but are more complex to manufacture, and their application in organic bioelectronic systems is limited due to the H+/OH production. By instead using the polyphosphonium-based BM diode, reported here, we foresee ionic, complex, and miniaturized circuits that can include charged biomolecules as the signal carrier to regulate functions and the physiology in cell systems, such as in biomolecule and drug delivery applications, and also in lab-on-a-chip applications.  相似文献   
123.
The aim of this study was to determine the mechanical variables that govern success of the Hecht vault. The participants were 122 male gymnasts from 30 countries performing the vault at the 1995 World Gymnastics Championships. The vaults were filmed using a Photosonics 16-mm motion picture camera operating at 100 Hz. Approximately 80 frames were digitized for each vault analysed. The method of Hay and Reid was used to develop a theoretical model to identify the mechanical and physical variables that determine linear and angular motions of the vault. Correlational analysis was used to establish the strength of the relationship between the causal mechanical variables identified in the model and the judges' scores. Significant correlations (P ? 0.005) indicated that the following were important determinants of success: large horizontal and vertical velocities at take-off from the board and the horse; large vertical and angular distances of pre-flight; large vertical impulses of high force and short duration exerted on the horse and the resulting large changes in vertical velocity on the horse; and large horizontal and vertical distances and long times of post-flight. Of the 18 significant variables identified in the present study, the angular distance of pre- and post-flights, the horizontal velocity and angular momentum at take-off from the horse, and the average moment of inertia and duration of post-flight collectively accounted for 57% of the variation in the judges' scores.  相似文献   
124.
In today's output defined society, alumni are the output of higher education. This article shows how alumni research can be used as an important indicator of curriculum quality. This relatively unexplored area of engineering education research in Europe is highlighted using a case study carried out in the Netherlands, the outcomes of which have served as a useful input for curriculum development at the institute where it was carried out.  相似文献   
125.
This study presents an analysis of parental experiences on follow-up after cochlear implantation. Data were constructed in semi-structured, individual interviews with the parents of 14 children who use cochlear implants. Drawing on narrative analysis, the study explores parental responses to insecurity concerning children’s learning and development, as well as the meaning professional support holds for parents. In their response to insecurity, the parents handle the ‘trouble’ of insecurity through constructing two narratives of self: the parent-as-learner and the parent-as-teacher. The parents use these narrative constructions to negotiate reassurance, holding themselves responsible for future outcomes. The parents’ stories reflect a language of instrumentality, inducing a burden of responsibility. The study addresses the need to question to which extent parents should act as teachers and cautions that, while acknowledging the importance of parents’ involvement for children’s learning and development, this should not reduce the relationship to a functional, pedagogical one. The contribution of the study is to bring into conversation how the language of instrumentality affects the parents and how this invokes a need for rethinking parent support. Suggestions for further research are given.  相似文献   
126.
The article reviews and discusses the status of sociologically oriented Norwegian research on adult education and training. It covers studies of recruitment to and outcomes from adult education, and the profile of the research is considered. Finally, future directions for research are suggested  相似文献   
127.
Berg, G. & Wallin, E. 1982. Research into the School as an Organization. II: The School as a Complex Organization. Scandinavian Journal of Educational Research 26, 161‐181. This article starts by examining the development of general organization theory, then proposes an overall organization model for analysing the school. A distinction is made between the school as an institution and the school as an organization, the latter defined as a function of the control emanating from the societal and the ‘actor’ level. A set of conceptual tools believed to describe and analyse the school as an organization is outlined. In the latter part of the article an illustration of how the theoretical discussion can be applied to practical situations is given, firstly by an analysis of a case study and secondly by giving examples of factors worth taking into account in concrete analyses of the organizational structures of schools.  相似文献   
128.
129.
In this study, 6‐month‐old infants' visual working memory for a static feature (color) and a dynamic feature (rotational motion) was compared. Comparing infants' use of different features can only be done properly if experimental manipulations to those features are equally salient (Kaldy & Blaser, 2009; Kaldy, Blaser, & Leslie, 2006). The interdimensional salience mapping method was used to find two objects that each were one Just Salient Difference from a common baseline object (N = 16). These calibrated stimuli were then used in a subsequent two‐alternative forced‐choice preferential looking memory test (N = 28). Results showed that infants noted the color change, but not the equally salient change in rotation speed.  相似文献   
130.
A model of human learning processes is presented, wherein learning is conceived as a qualitative development of the structure of the learner's actions. As an illustration of this conception a concise outline of Gal'perin's theory of learning is given. In connection with the relation between cognitive development and learning some Russian research is reviewed, which provides evidence for the standpoint that cognitive development can be strongly stimulated by appropriate learning and instruction. Finally an analysis is presented of structures of action, which represent important objectives of learning to think.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号