This study investigated whether haematological markers differ between young and masters marathon participants, running at similar performance levels. Nine young (31.89 ± 4.96 years) and eight masters (63.13 ± 4.61 years) runners participated. At five time points (pre-race through 54 h post-race), a complete blood cell count, basic metabolic panel and creatine kinase (CK) isoenzyme panel were assessed. Race performance was standardised using the World Masters Association Age Grading Performance Tables. Total CK levels were elevated for all participants at all time points post-race (P < 0.001). The CK-isoenzyme MB% was elevated across groups at 6, 30 and 54 h post-race (P < 0.01, P < 0.01 and P < 0.05), with masters runners having a higher CK-MB% at 30 and 54 h (P < 0.05, P < 0.05). Total white blood cell and neutrophil counts were elevated through 6 h post-race (P < 0.001), with higher levels found in younger runners (P < 0.001). When considering all blood work, masters runners had a higher number of abnormal values at 6, 30 and 54 h post-race (P < 0.05, P < 0.01 and P < 0.05). In conclusion, masters runners demonstrated sustained CK-MB elevation, which may suggest greater cardiac stress. However, future studies using additional cardiac markers should be completed to confirm these findings. In addition, masters runners showed an increased number of laboratory values outside normal range, indicating the body’s reduced capacity to respond to marathon running. 相似文献
There have been many conflicting observations between the linear or curvilinear decline in maximal heart rate (HRmax) with age. The aim of this study was to determine if linear or curvilinear equations would better describe the decline in HRmax with age in individuals of differing cardiorespiratory fitness (CRF) levels. Treadmill cardiopulmonary exercise test (CPX) results from participants (1510 men and 1134 women; 18–76 years) free of overt cardiovascular disease were retrospectively examined using cross-sectional and longitudinal study designs. Participants completing ≥2 CPX with ≥1 year between test dates were included in the longitudinal analysis (325 men and 150 women). Linear and quadratic regressions were applied to age and HRmax for the whole cohort and respective CRF groups (high, moderate, and low, relative to age and gender normative values). To test for differences among linear, quadratic, and polynomial equations, the change in R2 (cross-sectional analysis) and Bayesian information criterion (BIC) (longitudinal analysis) from the linear to the more complex models were calculated. The quadratic or polynomial regression in the cross-sectional analysis, marginally improved the variance in HRmax explained by age compared to the linear regression for the whole cohort (0.2%), moderate fit group (0.3%), and low fit group (0.8%). With no improvements in the high fit group. BIC did not improve for any CRF category in the longitudinal analysis. In conclusion, the minimal differences among linear, quadratic, and polynomial equations in the respective CRF groups, emphasizes the use of linear prediction equations to estimate HRmax. 相似文献
Although the effects of short versus long inter-set rest intervals in resistance training on measures of muscle hypertrophy have been investigated in several studies, the findings are equivocal and the practical implications remain unclear. In an attempt to provide clarity on the topic, we performed a systematic literature search of PubMed/MEDLINE, Scopus, Web of Science, Cochrane Library, and Physiotherapy Evidence Database (PEDro) electronic databases. Six studies were found to have met the inclusion criteria: (a) an experimental trial published in an English-language peer-reviewed journal; (b) the study compared the use of short (≤60?s) to long (>60?s) inter-set rest intervals in a traditional dynamic resistance exercise using both concentric and eccentric muscle actions, with the only difference in resistance training among groups being the inter-set rest interval duration; (c) at least one method of measuring changes in muscle mass was used in the study; (d) the study lasted for a minimum of four weeks, employed a training frequency of ≥2 resistance training days per week, and (e) used human participants without known chronic disease or injury. Current evidence indicates that both short and long inter-set rest intervals may be useful when training for achieving gains in muscle hypertrophy. Novel findings involving trained participants using measures sensitive to detect changes in muscle hypertrophy suggest a possible advantage for the use of long rest intervals to elicit hypertrophic effects. However, due to the paucity of studies with similar designs, further research is needed to provide a clear differentiation between these two approaches. 相似文献
The ACL-Return to Sport after Injury scale (ACL-RSI) measures athletes’ emotions, confidence in performance, and risk appraisal in relation to return to sport after ACL reconstruction. Aim of this study was to study the validity and reliability of the Dutch version of the ACL-RSI (ACL-RSI (NL)).
Total 150 patients, who were 3–16 months postoperative, completed the ACL-RSI(NL) and 5 other questionnaires regarding psychological readiness to return to sports, knee-specific physical functioning, kinesiophobia, and health-specific locus of control. Construct validity of the ACL-RSI(NL) was determined with factor analysis and by exploring 10 hypotheses regarding correlations between ACL-RSI(NL) and the other questionnaires. For test–retest reliability, 107 patients (5–16 months postoperative) completed the ACL-RSI(NL) again 2 weeks after the first administration. Cronbach’s alpha, Intraclass Correlation Coefficient (ICC), SEM, and SDC, were calculated. Bland–Altman analysis was conducted to assess bias between test and retest.
Nine hypotheses (90%) were confirmed, indicating good construct validity. The ACL-RSI(NL) showed good internal consistency (Cronbach’s alpha 0.94) and test–retest reliability (ICC 0.93). SEM was 5.5 and SDC was 15. A significant bias of 3.2 points between test and retest was found.
Therefore, the ACL-RSI(NL) can be used to investigate psychological factors relevant to returning to sport after ACL reconstruction. 相似文献
Research indicates that instructing athlete’s to focus on bodily movements (internal focus of attention [IFA]) may hinder performance, whereas instructing them to focus on the movement outcome (external focus of attention [EFA]) often enhances performance. Despite the importance of instructions in striking combat sports, limited research has examined the influence of IFA and EFA on performance in well-trained combat athletes. This study investigated the effects of different instructional cues on punching velocity (m · s?1) and normalised impact forces (N · kg?1) among intermediate (n = 8) and expert (n = 7) competitive boxers and kickboxers. Athletes completed three rounds of 12 maximal effort punches delivered to a punching integrator on three separate days. Day one was a familiarisation session with only control instructions provided. In the following two days athletes randomly received IFA, EFA or control instructions prior to each of the three rounds. Athletes punching with EFA were 4% faster and 5% more forceful than IFA (P < 0.05), and 2% faster and 3% more forceful than control (P < 0.05). Furthermore, experts punched 11% faster and with 13% greater force compared with intermediate athletes (P < 0.05). EFA led to a positive effect on punching performance and should be favoured over IFA and control instructions. 相似文献
This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO2 max], 54.1 ± 1.3 ml·kg?1·min?1) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90–240 min of treadmill or stationary bike exercise (60–80% VO2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min?1) had a greater cooling rate than NC (0.013 ± 0.003°C·min?1) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min?1) was similar to NC (0.025 ± 0.002°C·min?1) (0.004°C [?0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min?1) was similar to when NHA (0.020 ± 0.003°C·min?1) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates. 相似文献
This study sought to compare the kinetics and kinematics data in a group of habitual shod runners when running in traditional running shoes and newly designed minimalist shoes with lug platform. This novel footwear design claims to simulate barefoot running and reduce energy loss during impact. We compared footstrike angle (FSA), vertical average (VALR) and instantaneous (VILR) loading rates, energy loss and initial vertical stiffness between two shoe conditions. Runners demonstrated a decreased FSA while running in minimalist shoes with lug platform than traditional shoes (P = 0.003; Cohen’s d = 0.918). However, we did not observe a landing pattern transition. VALR and VILR between two footwear conditions showed no significant difference (P = 0.191–0.258; Cohen’s d = 0.304–0.460). Initial vertical stiffness (P = 0.032; Cohen’s d = 0.671) and energy loss (P = 0.044; Cohen’s d = 0.578) were greater when running in minimalist shoes with lug platform. The results show that minimalist shoes with lug platform reduce the FSA but may not lead to a landing pattern switch or lower vertical loading rates. Interestingly, the new shoe design leads to a greater energy loss than traditional running shoes, which could be explained by a higher initial vertical stiffness. 相似文献
The purpose of this study was to compare arm–leg coordination and kinematics during 100 m breaststroke in 26 (8 female; 18 male) specialist breaststroke swimmers. Laps were recorded using three 50-Hz underwater cameras. Heart rate and blood lactate were measured pre- and post-swim. Arm–leg coordination was defined using coordination phases describing continuity between recovery and propulsive phases of upper and lower limbs: coordination phase 1 (time between end of leg kick and start of the arm pull phases); and coordination phase 2 (time between end of arm pull and start of leg kick phases). Duration of stroke phases, coordination phases, swim velocity, stroke length (SL), stroke rate (SR) and stroke index (SI) were analysed during the last three strokes of each lap that were unaffected by turning or finishing. Significant changes in velocity, SI and SL (P < 0.05) were found between laps. Both sexes showed significant increase (P < 0.05) in heart rate and blood lactate pre- to post-swim. Males had significantly (P < 0.01) faster swim velocities resulting from longer SLs (P = 0.016) with no difference in SR (P = 0.064). Sex differences in kinematic parameters can be explained by anthropometric differences providing males with increased propelling efficiency. 相似文献