首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6770篇
  免费   65篇
  国内免费   2篇
教育   4879篇
科学研究   721篇
各国文化   63篇
体育   584篇
综合类   8篇
文化理论   134篇
信息传播   448篇
  2023年   33篇
  2022年   63篇
  2021年   100篇
  2020年   143篇
  2019年   216篇
  2018年   329篇
  2017年   359篇
  2016年   365篇
  2015年   248篇
  2014年   201篇
  2013年   922篇
  2012年   294篇
  2011年   269篇
  2010年   184篇
  2009年   142篇
  2008年   160篇
  2007年   143篇
  2006年   133篇
  2005年   736篇
  2004年   519篇
  2003年   366篇
  2002年   168篇
  2001年   99篇
  2000年   70篇
  1999年   59篇
  1998年   42篇
  1997年   23篇
  1996年   40篇
  1995年   33篇
  1994年   33篇
  1993年   18篇
  1992年   22篇
  1991年   23篇
  1990年   27篇
  1989年   29篇
  1988年   25篇
  1987年   26篇
  1986年   10篇
  1985年   13篇
  1984年   13篇
  1983年   14篇
  1982年   14篇
  1981年   8篇
  1980年   7篇
  1979年   9篇
  1978年   8篇
  1977年   11篇
  1976年   12篇
  1975年   8篇
  1974年   6篇
排序方式: 共有6837条查询结果,搜索用时 15 毫秒
61.
This essay considers the question of why we should teach science to K-2. After initial consideration of two traditional reasons for studying science, six assertions supporting the idea that even small children should be exposed to science are given. These are, in order: (1) Children naturally enjoy observing and thinking about nature. (2) Exposing students to science develops positive attitudes towards science. (3) Early exposure to scientific phenomena leads to better understanding of the scientific concepts studied later in a formal way. (4) The use of scientifically informed language at an early age influences the eventual development of scientific concepts. (5) Children can understand scientific concepts and reason scientifically. (6) Science is an efficient means for developing scientific thinking. Concrete illustrations of some of the ideas discussed in this essay, particularly, how language and prior knowledge may influence the development of scientific concepts, are then provided. The essay concludes by emphasizing that there is a window of opportunity that educators should exploit by presenting science as part of the curriculum in both kindergarten and the first years of primary school.  相似文献   
62.
Cerdán  R.  Pérez  A.  Vidal-Abarca  E.  Rouet  J. F. 《Reading and writing》2019,32(8):2111-2124
Reading and Writing - The present study investigates the effectiveness of question paraphrases in supporting students’ understanding of a specific task. Secondary school students (i.e.,...  相似文献   
63.
This article describes a set of computerized tools that support the design and evaluation of competency-based training programs. The training of complex skills such as air traffic control and process control requires a competency-based approach that focuses on the integration and coordination of constituent skills and transfer of learning. At the heart of the training are authentic whole-task practice situations. The instructional design tools are based on van Merriënboer's 4C/ID* methodology (1997). The article describes a training design tool (Core) that supports the analysis and design for competency-based training programs and an evaluation tool (Eval) that supports the subsequent revision of this training design.  相似文献   
64.
65.
韩礼德系统语法语言分析的模式   总被引:3,自引:0,他引:3  
:语言可以从不同角度加以研究。该文从六个方面简单阐述了系统语法大师M .A .K .Halliday语言分析的模式 ,主要内容包括 :语言的层次 ,链轴和选择轴 ,语法结构 ,语法单位 ,语法的级阶和语法系统  相似文献   
66.
This paper presents an adaptive strategy for controlling chaotic systems. By employing the phase space reconstruction technique in nonlinear dynamical systems theory, the proposed strategy transforms the nonlinear system into canonical form, and employs a nonlinear observer to estimate the uncertainties and disturbances of the nonlinear system, and then establishes a state-error-like feedback law. The developed control scheme allows chaos control in spite of modeling errors and parametric variations. The effectiveness of the proposed approach has been demonstrated through its applications to two well-known chaotic systems: Duffing oscillator and Rössler chaos.  相似文献   
67.
Genetic determinism can be described as the attribution of the formation of traits to genes, where genes are ascribed more causal power than what scientific consensus suggests. Belief in genetic determinism is an educational problem because it contradicts scientific knowledge, and is a societal problem because it has the potential to foster intolerant attitudes such as racism and prejudice against sexual orientation. In this article, we begin by investigating the very nature of belief in genetic determinism. Then, we investigate whether knowledge of genetics and genomics is associated with beliefs in genetic determinism. Finally, we explore the extent to which social factors such as gender, education, and religiosity are associated with genetic determinism. Methodologically, we gathered and analyzed data on beliefs in genetic determinism, knowledge of genetics and genomics, and social variables using the “Public Understanding and Attitudes towards Genetics and Genomics” (PUGGS) instrument. Our analyses of PUGGS responses from a sample of Brazilian university freshmen undergraduates indicated that (1) belief in genetic determinism was best characterized as a construct built up by two dimensions or belief systems: beliefs concerning social traits and beliefs concerning biological traits; (2) levels of belief in genetic determination of social traits were low, which contradicts prior work; (3) associations between knowledge of genetics and genomics and levels of belief in genetic determinism were low; and (4) social factors such as age and religiosity had stronger associations with beliefs in genetic determinism than knowledge. Although our study design precludes causal inferences, our results raise questions about whether enhancing genetic literacy will decrease or prevent beliefs in genetic determinism.  相似文献   
68.
69.
This paper describes an ongoing process of participatory curriculum development. It outlines some of the tensions which need to be explored in science curriculum development: debates about the nature of science, of society, of school science content and of learning theories. The process whereby action can arise from this debate is also explored. An example will be outlined of a network of science curriculum action which has developed from the work of a range of science education projects in Natal, South Africa. Specializations: science curriculum development from primary to tertiary level. Specializations: inservice primary science teacher development. Specializations: inservice teacher development, biology education. Specializations: environmental education, teacher development. Specializations: environmental education, teacher development.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号