首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   4篇
  国内免费   1篇
教育   31篇
科学研究   24篇
体育   3篇
文化理论   2篇
信息传播   2篇
  2022年   1篇
  2021年   5篇
  2020年   8篇
  2019年   6篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   9篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1977年   2篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
21.
On 1 January 2022,a new version of the Law on China's Science and Technology(S&T)Advancement('科学技术进步法')went into effect.This is the second revision of the Law,w...  相似文献   
22.
The Chinese government has recently announced a compre-hensive proposal of the 14th Five-Year Plan for the next phase of development in all sectors of Chinese s...  相似文献   
23.
24.
25.
Since the start of the twenty-first century, university rankings have become internationalized. Global rankings have a variety of uses, levels of popularity and rationales and they are here to stay. An examination of the results of the current global ranking reveals that well-reputed world-class universities are amongst the top ranked ones. A major concern for university administrators in many parts of the world is how to use the global rankings wisely in their mid-term and long-term strategic planning for building their institutions into world-class universities. Four major global rankings have been developed: the Academic Ranking of World Universities, the World University Rankings, the Webometrics Ranking of World Universities and the Performance Ranking of Scientific Papers for World Universities. The main purpose of this paper is to explore the most influential indicators in these global university rankings that will affect the rank mobility of an institution. Based on an analysis of correlation coefficients and K-means clustering, a model of strategic institutional planning for building a world-class university is proposed.  相似文献   
26.
27.
Interviews with key scientists who had conducted research on Severe Acute Respiratory Syndrome (SARS), together with analysis of media reports, documentaries and other literature published during and after the SARS epidemic, revealed many interesting aspects of the nature of science (NOS) and scientific inquiry in contemporary scientific research in the rapidly growing field of molecular biology. The story of SARS illustrates vividly some NOS features advocated in the school science curriculum, including the tentative nature of scientific knowledge, theory-laden observation and interpretation, multiplicity of approaches adopted in scientific inquiry, the inter-relationship between science and technology, and the nexus of science, politics, social and cultural practices. The story also provided some insights into a number of NOS features less emphasised in the school curriculum—for example, the need to combine and coordinate expertise in a number of scientific fields, the intense competition between research groups (suspended during the SARS crisis), the significance of affective issues relating to intellectual honesty and the courage to challenge authority, the pressure of funding issues on the conduct of research and the ‘peace of mind’ of researchers, These less emphasised elements provided empirical evidence that NOS knowledge, like scientific knowledge itself, changes over time. They reflected the need for teachers and curriculum planners to revisit and reconsider whether the features of NOS currently included in the school science curriculum are fully reflective of the practice of science in the 21st century. In this paper, we also report on how we made use of extracts from the news reports and documentaries on SARS, together with episodes from the scientists’ interviews, to develop a multimedia instructional package for explicitly teaching the prominent features of NOS and scientific inquiry identified in the SARS research.
Siu Ling WongEmail:

Siu Ling Wong    is an Assistant Professor, in the Division of Science, Mathematics and Computing in the Faculty of Education at The University of Hong Kong. She received her B.Sc. from The University of Hong Kong and her Ph.D. from the University of Oxford. Her research interests include promoting teachers’ and students’ understanding of nature of science and scientific inquiry, physics education, teacher professional development. Jenny Kwan   is a PhD student in the Faculty of Education, at The University of Hong Kong. She received her B.Sc. from University of Sydney. She is now investigating in-service teachers’ classroom instruction on nature of science in relation to their intentions, beliefs, and pedagogical content knowledge. Derek Hodson   is Professor of Science Education at the Ontario Institute for Studies in Education and Editor of the Canadian Journal of Science, Technology and Mathematics Education. His major research interests include: history, philosophy & sociology of science and its implications for science education; STSE education and the politicisation of science education; science curriculum history; multicultural and antiracist education; and science teacher education via action research. Benny Hin Wai Yung    is Head, Associate Professor, in the Division of Science, Mathematics and Computing in the Faculty of Education at University of Hong Kong. His main research areas are teacher education and development, science education and assessment for science learning. His recent publications include Yung BHW (2006) Assessment reform in science education: fairness and fear. Springer, Dordrecht.  相似文献   
28.
In the application of the Satorra–Bentler scaling correction, the choices of normal-theory weight matrices (i.e., the model-predicted vs. the sample covariance matrix) in the calculation of the correction remains unclear. Different software programs use different matrices by default. This simulation study investigates the discrepancies due to the weight matrices in the robust chi-square statistics, standard errors, and chi-square-based model fit indexes. This study varies the sample sizes at 100, 200, 500, and 1,000; kurtoses at 0, 7, and 21; and degrees of model misspecification, measured by the population root mean square error of approximation (RMSEA), at 0, .03, .05, .08, .10, and .15. The results favor the use of the model-predicted covariance matrix because it results in less false rejection rates under the correctly specified model, as well as more accurate standard errors across all conditions. For the sample-corrected robust RMSEA, comparative fit index (CFI) and Tucker–Lewis index (TLI), 2 matrices result in negligible differences.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号