首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
教育   33篇
科学研究   2篇
各国文化   1篇
信息传播   5篇
  2021年   2篇
  2020年   1篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2013年   6篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  1987年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1972年   2篇
  1970年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
31.
A total of 136 eighth-grade math students from 2 Singapore schools learned from either productive failure (PF) or vicarious failure (VF). PF students generated solutions to a complex problem targeting the concept of variance that they had not learned yet before receiving instruction on the targeted concept. VF students evaluated the solutions generated by PF students before receiving the same instruction. Student-generated solutions were either suboptimal or incorrect, and in this sense can be conceived as failed problem-solving attempts. Although there was no difference on self-reported engagement, PF students reported significantly greater mental effort and interest in knowing the canonical solution to the problem than VF students. When preexisting differences in general ability, math ability, and prior knowledge were controlled, PF students outperformed VF students on conceptual understanding and transfer without compromising procedural fluency. These results suggest that when learning a new math concept, people learn better from their own failed solutions than those of others provided appropriate instruction on the targeted concept is given after the generation or evaluation activity.  相似文献   
32.
33.
“Community” has become a commonplace term in the learning sciences. Alongside this popularization comes the view that communities are, in general, something to strive towards. We draw on contemporary trends to problematize this assumption and motivate a discussion for the productivity of dissent.  相似文献   
34.
Learning and performance are not always commensurable. Conditions that maximize performance in the initial learning may not maximize learning in the longer term. I exploit this incommensurability to theoretically and empirically interrogate four possibilities for design: productive success, productive failure, unproductive success, and unproductive failure. Instead of only looking at extreme comparisons between discovery learning and direct instruction, an analysis of the four design possibilities suggests a vast design space in between the two extremes that may be more productive for learning than the extremes. I show that even though direct instruction can be conceived as a productive success compared to discovery learning, theoretical and empirical analyses suggests that it may well be an unproductive success compared with examples of productive failure and productive success. Implications for theory and the design of instruction are discussed.  相似文献   
35.
This article presents a metalogue discussion about the two focus articles and the six associated review essays on the topic of conceptual change as it applies to research, and science teaching and learning in museum settings. Through the lenses of a sociocultural perspectives of learning we examine the applicability of the ideas presented in the forum for museums and museum educators. First we reflect on the role that emotions can play in concept development; second, we reflect on the role of language, talk, and gestures to concept development and conceptual change in the short-lived nature of experiences and conversations in museums; and third, we consider the nature of objects as representations of science content in museum settings.
Jennifer D. AdamsEmail:

Jennifer D. Adams   is an assistant professor of science education at Brooklyn College, CUNY. She did her doctoral dissertation at the Graduate Center, CUNY on museum-based teacher education at the American Museum of Natural History. Her research focuses on informal science teaching and learning, museum education, and culturally relevant science teaching and learning. Lynn U. Tran   received her PhD in science education at North Carolina State University, and recently finished a post-doctoral fellowship with the Center for Informal Learning and Schools at King’s College London. She is currently a Research Specialist with the Center for Research, Evaluation, and Assessment at the Lawrence Hall of Science at the University of California, Berkeley. Her research focuses on the pedagogical practices and professional development of science educators who teach in museums. Preeti Gupta   is the Senior Vice President of Education and Public Programs at the New York Hall of Science. She is responsible for all programs and projects in the following divisions: Science Career Ladder, the Explainers who serve as interpretation staff, Professional Development, K-12 Student Programs, Digital Learning Programs, Science Technology Library and Public Programs. Ms. Gupta is a graduate of the Science Career Ladder, starting her career in museum education as a high school student. She is currently pursuing a PhD in Urban Education at the CUNY Graduate Center. Helen Creedon-O’Hurley   is a secondary science educator in New York City’s public schools. She is the president of the Science Council of New York City, a science educator organization, and is in the doctoral program in urban education at the Graduate Center, CUNY.  相似文献   
36.
37.
In a study with ninth-grade mathematics students on learning the concept of variance, students experienced either direct instruction (DI) or productive failure (PF), wherein they were first asked to generate a quantitative index for variance without any guidance before receiving DI on the concept. Whereas DI students relied only on the canonical formulation of variance taught to them, PF students generated a diversity of formulations for variance but were unsuccessful in developing the canonical formulation. On the posttest however, PF students significantly outperformed DI students on conceptual understanding and transfer without compromising procedural fluency. These results challenge the claim that there is little efficacy in having learners solve problems targeting concepts that are novel to them, and that DI needs to happen before learners should solve problems on their own.  相似文献   
38.
Whereas some educational designers believe that students should learn new concepts through explorative problem solving within dedicated environments that constrain key parameters of their search and then support their progressive appropriation of empowering disciplinary forms, others are critical of the ultimate efficacy of this discovery-based pedagogical philosophy, citing an inherent structural challenge of students constructing historically achieved conceptual structures from their ingenuous notions. This special issue presents six educational research projects that, while adhering to principles of discovery-based learning, are motivated by complementary philosophical stances and theoretical constructs. The editorial introduction frames the set of projects as collectively exemplifying the viability and breadth of discovery-based learning, even as these projects: (a) put to work a span of design heuristics, such as productive failure, surfacing implicit know-how, playing epistemic games, problem posing, or participatory simulation activities; (b) vary in their target content and skills, including building electric circuits, solving algebra problems, driving safely in traffic jams, and performing martial-arts maneuvers; and (c) employ different media, such as interactive computer-based modules for constructing models of scientific phenomena or mathematical problem situations, networked classroom collective “video games,” and intercorporeal master–student training practices. The authors of these papers consider the potential generativity of their design heuristics across domains and contexts.  相似文献   
39.
This article proposes a conceptual framework of learning based on perspectives and methodologies being employed in the study of complex physical and social systems to inform educational research. We argue that the contexts in which learning occurs are complex systems with elements or agents at different levels—including neuronal, cognitive, intrapersonal, interpersonal, cultural—in which there are feedback interactions within and across levels of the systems so that collective properties arise (i.e., emerge) from the behaviors of the parts, often with properties that are not individually exhibited by those parts. We analyze the long-running cognitive versus situative learning debate and propose that a complex systems conceptual framework of learning (CSCFL) provides a principled way to achieve a theoretical rapprochement. We conclude with a consideration of more general implications of the CSCFL for educational research.  相似文献   
40.
The Indian Institutes of Technology (IITs) are among the most prestigious technical institutes in India (and perhaps in the world) for undergraduate engineering education. Admission to an IIT is viewed by many Indians as a passport to success, prosperity, prestige, and possibly moving to Western countries for higher studies and/or jobs. This paper examines whether (i) access to the IITs is open to students irrespective of their socioeconomic status; (ii) students’ satisfaction, once they enter an IIT, is conditioned by their socioeconomic status; and (iii) students’ attitudes towards their future plans are influenced by their socioeconomic status. The paper is based on a survey conducted with nearly 260 students at two out of five original IITs in 2007–2008. Findings reveal that access to the IITs, satisfaction at the IITs, and future plans after the IITs are strongly correlated to students’ socioeconomic status. Even though admission to the IITs is based on an entrance examination, most of its students are from the socially and economically well-off families.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号