首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17588篇
  免费   276篇
  国内免费   31篇
教育   12131篇
科学研究   2166篇
各国文化   141篇
体育   1309篇
综合类   20篇
文化理论   186篇
信息传播   1942篇
  2022年   115篇
  2021年   175篇
  2020年   281篇
  2019年   375篇
  2018年   531篇
  2017年   583篇
  2016年   507篇
  2015年   351篇
  2014年   508篇
  2013年   2879篇
  2012年   433篇
  2011年   414篇
  2010年   395篇
  2009年   348篇
  2008年   377篇
  2007年   402篇
  2006年   356篇
  2005年   294篇
  2004年   318篇
  2003年   284篇
  2002年   284篇
  2001年   391篇
  2000年   442篇
  1999年   322篇
  1998年   202篇
  1997年   234篇
  1996年   234篇
  1995年   156篇
  1994年   170篇
  1993年   142篇
  1992年   263篇
  1991年   243篇
  1990年   262篇
  1989年   257篇
  1988年   244篇
  1987年   239篇
  1986年   237篇
  1985年   269篇
  1984年   199篇
  1983年   197篇
  1982年   170篇
  1981年   147篇
  1980年   138篇
  1979年   216篇
  1978年   175篇
  1977年   145篇
  1976年   126篇
  1975年   120篇
  1974年   124篇
  1973年   120篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
941.
This study investigates the antecedents and consequences of team learning, which is composed of information acquisition, dissemination, and implementation, in information technology (IT) implementation projects. By investigating 129 IT implementation project teams, we found that (1) information acquisition and information dissemination have a positive impact on project outcomes, such as speed-to-users, lower implementation cost, and operational effectiveness, and (2) team behavior and enabler variables, such as teamwork, team communication, interpersonal trust between team members, team commitment, and senior manager support, positively influence team learning. We also found that team anxiety moderates the relationship between team learning and project outcomes.  相似文献   
942.
This paper addresses synchronization problem for discrete-time complex dynamical networks with interval time-varying delays. In order to achieve the synchronization, a feedback controller subjected to randomly occurring perturbations will be considered. The randomly occurring perturbations are assumed to belong to the Binomial sequence. By constructing a suitable Lyapunov–Krasovskii functional, and utilizing reciprocally convex approach and Finsler?s lemma, the synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. The networks are represented by the use of Kronecker product technique. The effectiveness of the proposed methods will be verified via numerical examples.  相似文献   
943.
944.
Viral infection with hepatitis C virus (HCV) has a high propensity in becoming chronic and it is the major cause of hepatocellular carcinoma (HCC) worldwide. This review was basically established to illustrate the putative role of the P53 gene Arg72Pro polymorphism on various cancer models and viral infections, focusing on HCV and HCC incidences. Authors studied the 72 G/C single base substitution of P53 gene at codon 72 using various polymorphic techniques. Intriguingly, authors investigated that the P53 codon 72 plays a crucial role as risk factor in several cancer models. Others found that there is no association between codon 72 genotypes and HCV disease severity or liver cancer. Moreover, the lack of a significant relationship between this polymorphism and risk of HCC shows that it does not predispose towards hepatocarcinogenesis and the frequent loss of the proline allele in HCV-associated carcinogenesis of the liver plays some critical role in hepatocarcinogenesis. Amazingly, there is a significant correlation between male homozygotes for P53 72Pro with HCV type 1b infection. However, there was no significant difference between the P53 polymorphism and HCV genotypes 2a and 2b. It was concluded that the P53 gene polymorphism at codon 72 has been investigated as potential risk factor in several cancer models and HCV infections.  相似文献   
945.
The emerging technologies on mobile-based diagnosis and bioanalytical detection have enabled powerful laboratory assays such as enzyme-linked immunosorbent assay (ELISA) to be conducted in field-use lab-on-a-chip devices. In this paper, we present a low-cost universal serial bus (USB)-interfaced mobile platform to perform microfluidic ELISA operations in detecting the presence and concentrations of BDE-47 (2,2′,4,4′-tetrabromodiphenyl ether), an environmental contaminant found in our food supply with adverse health impact. Our point-of-care diagnostic device utilizes flexible interdigitated carbon black electrodes to convert electric current into a microfluidic pump via gas bubble expansion during electrolytic reaction. The micropump receives power from a mobile phone and transports BDE-47 analytes through the microfluidic device conducting competitive ELISA. Using variable domain of heavy chain antibodies (commonly referred to as single domain antibodies or Nanobodies), the proposed device is sensitive for a BDE-47 concentration range of 10−3–104 μg/l, with a comparable performance to that uses a standard competitive ELISA protocol. It is anticipated that the potential impact in mobile detection of health and environmental contaminants will prove beneficial to our community and low-resource environments.  相似文献   
946.
Droplet-based microfluidics has gained extensive research interest as it overcomes several challenges confronted by conventional single-phase microfluidics. The mixing performance inside droplets/slugs is critical in many applications such as advanced material syntheses and in situ kinetic measurements. In order to understand the effects of operating conditions on the mixing performance inside liquid slugs generated by a microfluidic T-junction, we have adopted the volume of fluid method coupled with the species transport model to study and quantify the mixing efficiencies inside slugs. Our simulation results demonstrate that an efficient mixing process is achieved by the intimate collaboration of the twirling effect and the recirculating flow. Only if the reagents are distributed transversely by the twirling effect, the recirculating flow can bring in convection mechanism thus facilitating mixing. By comparing the mixing performance inside slugs at various operating conditions, we find that slug size plays the key role in influencing the mixing performance as it determines the amount of fluid to be distributed by the twirling effect. For the cases where short slugs are generated, the mixing process is governed by the fast convection mechanism because the twirling effect can distribute the fluid to the flow path of the recirculating flow effectively. For cases with long slugs, the mixing process is dominated by the slow diffusion mechanism since the twirling effect is insufficient to distribute the large amount of fluid. In addition, our results show that increasing the operating velocity has limited effects on improving the mixing performance. This study provides the insight of the mixing process and may benefit the design and operations of droplet-based microfluidics.  相似文献   
947.
Optical chromatography relies on the balance between the opposing optical and fluid drag forces acting on a particle. A typical configuration involves a loosely focused laser directly counter to the flow of particle-laden fluid passing through a microfluidic device. This equilibrium depends on the intrinsic properties of the particle, including size, shape, and refractive index. As such, uniquely fine separations are possible using this technique. Here, we demonstrate how matching the diameter of a microfluidic flow channel to that of the focusing laser in concert with a unique microfluidic platform can be used as a method to fractionate closely related particles in a mixed sample. This microfluidic network allows for a monodisperse sample of both polystyrene and poly(methyl methacrylate) spheres to be injected, hydrodynamically focused, and completely separated. To test the limit of separation, a mixed polystyrene sample containing two particles varying in diameter by less than 0.5 μm was run in the system. The analysis of the resulting separation sets the framework for continued work to perform ultra-fine separations.  相似文献   
948.
Shear stress is the major mechanical force applied on vascular endothelial cells by blood flow, and is a crucial factor in normal vascular physiology and in the development of some vascular pathologies. The exact mechanisms of cellular mechano-transduction in mammalian cells and tissues have not yet been elucidated, but it is known that mechanically sensitive receptors and ion channels play a crucial role. This paper describes the use of a novel and efficient microfluidic device to study mechanically-sensitive receptors and ion channels in vitro, which has three independent channels from which recordings can be made and has a small surface area such that fewer cells are required than for conventional flow chambers. The contoured channels of the device enabled examination of a range of shear stresses in one field of view, which is not possible with parallel plate flow chambers and other previously used devices, where one level of flow-induced shear stress is produced per fixed flow-rate. We exposed bovine aortic endothelial cells to different levels of shear stress, and measured the resulting change in intracellular calcium levels ([Ca2+]i) using the fluorescent calcium sensitive dye Fluo-4AM. Shear stress caused an elevation of [Ca2+]i that was proportional to the level of shear experienced. The response was temperature dependant such that at lower temperatures more shear stress was required to elicit a given level of calcium signal and the magnitude of influx was reduced. We demonstrated that shear stress-induced elevations in [Ca2+]i are largely due to calcium influx through the transient receptor potential vanilloid type 4 ion channel.  相似文献   
949.
This study proposes a novel cell collection method based on collagenase treatment and ultrasonic vibration. The method collects calf chondrocytes from a reusable metal cell culture substrate. To develop our concept, we calculated the natural vibration modes of the cell culture substrate by a finite element method, and conducted eigenvalue and piezoelectric-structural analyses. Selecting the first out-of-plane vibration mode of the substrate, which has a single nodal circle, we designed and fabricated the cell collection device. The excited vibration mode properly realized our intentions. We then evaluated the cell collection ratio and the growth response, and observed the morphology of the collected cells. The collagenase and ultrasonic vibration treatment collected comparable numbers of cells to conventional trypsin and pipetting treatment, but improved the proliferating cell statistics. Morphological observations revealed that the membranes of cells collected by the proposed method remain intact; consequently, the cells are larger and rougher than cells collected by the conventional method. Therefore, we present a promising cell collection method for adhesive cell culturing process.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号