首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2463篇
  免费   66篇
  国内免费   4篇
教育   1835篇
科学研究   120篇
各国文化   63篇
体育   249篇
综合类   1篇
文化理论   28篇
信息传播   237篇
  2022年   16篇
  2021年   20篇
  2020年   45篇
  2019年   64篇
  2018年   97篇
  2017年   105篇
  2016年   93篇
  2015年   62篇
  2014年   91篇
  2013年   540篇
  2012年   79篇
  2011年   74篇
  2010年   59篇
  2009年   70篇
  2008年   87篇
  2007年   64篇
  2006年   70篇
  2005年   61篇
  2004年   47篇
  2003年   63篇
  2002年   64篇
  2001年   44篇
  2000年   32篇
  1999年   35篇
  1998年   24篇
  1997年   36篇
  1996年   35篇
  1995年   36篇
  1994年   19篇
  1993年   21篇
  1992年   24篇
  1991年   32篇
  1990年   22篇
  1989年   26篇
  1988年   17篇
  1987年   13篇
  1986年   25篇
  1985年   16篇
  1984年   15篇
  1983年   19篇
  1982年   25篇
  1981年   19篇
  1980年   8篇
  1979年   23篇
  1978年   10篇
  1977年   14篇
  1976年   12篇
  1974年   7篇
  1972年   6篇
  1967年   5篇
排序方式: 共有2533条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
75.
Transfer is the application in the workplace of the knowledge, skills and attitudes learned in training. With transfer, trainers hope to link training to increased job performance. However, training alone will not produce transfer. To affect job performance as a result of training, trainers must intentionally promote transfer using a variety of strategies based on known principles of human performance technology. The MASS model, presented in this paper, brings together four of these principles. According to the MASS model, trainers who promote transfer (and who thereby become performance technologists) 1) Motivate trainees to learn and use the training material; 2) increase trainees' Awareness of when to use new skills and ideas; 3) enable trainees to master and to apply Skills; and 4) give trainees psychological and physical Support on the job. When performance technologists follow the MASS model, they can expect to produce trainees who apply at work what they have been taught in training. Use of the model is illustrated with two examples.  相似文献   
76.
The standard model (SM) of particle physics, comprised of the unified electroweak and quantum chromodynamic theories, accurately explains almost all experimental results related to the micro-world, and has made a number of predictions for previously unseen particles, most notably the Higgs scalar boson, that were subsequently discovered. As a result, the SM is currently universally accepted as the theory of the fundamental particles and their interactions. However, in spite of its numerous successes, the SM has a number of apparent shortcomings, including: many free parameters that must be supplied by experimental measurements; no mechanism to produce the dominance of matter over antimatter in the universe; and no explanations for gravity, the dark matter in the universe, neutrino masses, the number of particle generations, etc. Because of these shortcomings, there is considerable incentive to search for evidence for new, non-SM physics phenomena that might provide important clues about what a new, beyond the SM theory (BSM) might look like. Although the center-of-mass energies that BESIII can access are far below the energy frontier, searches for new, BSM physics are an important component of its research program. This report reviews some of the highlights from BESIII’s searches for signs of new, BSM physics by: measuring rates for processes that the SM predicts to be forbidden or very rare; searching for non-SM particles such as dark photons; performing precision tests of SM predictions; and looking for violations of the discrete symmetries C and CP in processes for which the SM expectations are immeasurably small.  相似文献   
77.
78.
79.
80.
Charles Perrow used the term “normal accidents” to characterize a type of catastrophic failure that resulted when complex, tightly coupled production systems encountered a certain kind of anomalous event. These were events in which systems failures interacted with one another in a way that could not be anticipated, and could not be easily understood and corrected. Systems of the production of expert knowledge are increasingly becoming tightly coupled. Unlike classical science, which operated with a long time horizon, many current forms of expert knowledge are directed at immediate solutions to complex problems. These are prone to breakdowns like the kind discussed by Perrow. The example of the Homestake mine experiment shows that even in modern physics complex systems can produce knowledge failures that last for decades. The concept of knowledge risk is introduced, and used to characterize the risk of failure in such systems of knowledge production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号