首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
教育   26篇
科学研究   14篇
文化理论   1篇
信息传播   4篇
  2023年   2篇
  2022年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2003年   5篇
  2002年   3篇
  1999年   3篇
  1997年   2篇
  1996年   1篇
  1983年   1篇
  1979年   2篇
  1976年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
21.
22.
The aim of the present study was to evaluate the antidiabetic and ameliorative potential of aqueous extract of Ficus bengalensis bark in streptozotocin induced diabetic rats. The effect of oral administration of aqueous extract of F. bengalensis bark on blood glucose, serum electrolytes, serum glycolytic enzymes, liver microsomal protein, hepatic cytochrome P-450 dependent monooxygenase enzymes and lipid peroxidation in liver and kidney of streptozotocin -induced diabetic rats was studied. Oral administration of Ficus bengalensis to fed, fasted and glucose loaded diabetic rats significantly [F > 0.05 (ANOVA) and P< 0.05 (DMRT)] decreased the blood glucose level at 5 hrs and restored the levels of serum electrolytes, glycolytic enzymes and hepatic cytochrome P-450 dependent enzyme systems and decreased the formation of liver and kidney lipid peroxides at the end of 12 weeks. Further, the aqueous extract of Ficus bengalensis at a dose of 500mg/kg/day exhibits significant antidiabetic and ameliorative activity as evidenced by histological studies in normal and Ficus bengalensis treated streptozotocin induced diabetic rats. On the basis of our findings, it could be used as an antidiabetic and ameliorative agent for better management of diabetes mellitus.  相似文献   
23.
This review article on the beneficial uses of Allium antioxidants tries to give some answers to the recent doubts raised by Singh et al. (Ind J Clin Biochem 25(3):225–243, 2010) against the claim of some researchers that Antioxidants (AOs) are miraculous molecules. Many people still believe that vitamins like A, C and E are the only true AOs that play important role in the corrections of metabolic derangements in life style diseases and hence all their faults are attributed to the failures of AOs as a class. This is quite unfair as there are many other natural AOs that do equal or even better AO action than the vitamins. Such is the case with the Allium S-alkyl sulfoxide aminoacids and their breakdown products viz, the various poly sulfides and their oxides e.g. allicin and ajoene type compounds which trap electrons mainly. It is true that antioxidant vitamins and β-carotene a precursor of Vitamin A bring about problems as prooxidant or as agents that block some metabolic pathways and gene expression. Again the argument that AOs cannot improve the level of antioxidant enzymes like SOD, catalase and glutathione Px is also not universal. Actually allium AOs can even spare the use of antioxidant vitamins in the body and enhance the action of antioxidant enzymes and supply of ATP and other nutrients to the tissues as the former are good vasodialators and promoters of membrane permeability. The use of AOs should be selective and moderate. Allium AOs satisfy the role of ideal AOs based on many of their invivo and invitro actions reported by the author and others. Their metabolits can regenerate them and recycle them for a sufficient time in the body. They have non antioxidant effects also such as antiplatelet, fibrinolytic, antiinflammatory, immunomodulatory, antiageing actions etc. Plant derived AOs may be more beneficial and better tolerated in their partially purified forms rather than in their absolutely purified forms as the accompanying principles have some protective and regulatory effects in general. This and other aspects of allium AOs are discussed in the paper.  相似文献   
24.
25.
26.
V. Krishnan 《Resonance》2011,16(12):1201-1210
One of the most important chemical reactions is electron transfer from one atomic/molecular unit to another. This reaction, accompanied by proton and hydrogen atom transfers, occurs in a cascade in many biological processes, including photosynthesis. The key chemical steps involved in photosynthesis and the many unsolved mysteries are described in this article.  相似文献   
27.
28.
29.
Heavy metal pollution is a global public health challenge due to its stable and persistent environmental contamination. Of these lead is considered to be one of the most common ubiquitous and industrial pollutants and at low concentration it exerts extensive damages to the tissues. Daily feeding of lead acetate solution (Dose: 10 mg/kg/day) to normal rats for a month adversely altered the parameters of blood, serum and tissues, viz; RBC, WBC, Hb, ?- ALAD (Delta amino levulinic acid dehydratase), Pb content, lipids, oxidized lipids (TBARS), vitamins C and E and GSH levels and activities of AST, ALT and antioxidant enzymes viz; catalase, GR, Gpx and SOD. In order to study whether antioxidants have any effect to counteract the toxicity of lead we have selected comparatively better active allium fractions for the study viz: polar fraction of garlic (PFG) and polar fraction of onion (PFO). On feeding of these active fractions of garlic and onion oils i.e. their polar fractions and vitamin E (Dose 100 mg/kg/day) separately for a month along with or without lead acetate to rats each nutraceutical and vitamin E counteracted the adverse effects of Pb significantly (p ≤ 0.05). Their effects are in the order of PFG > PFO > Vitamin E. All these results point out that garlic and onion oils contain natural disulfoxide compounds which act as antioxidant and anti toxic to lead compounds. Their comparative differences in action may be due to the presence and position of double bonds and disulfide oxide bonds in their molecules. i.e., in PFG the allyl disulfide oxide group is present and in PFO saturated methyl and propyl groups and unsaturated propenyl group are present in place of allyl groups. The former group confers a better antioxidant activity on PFG, while the latter groups confer a lesser activity on PFO.  相似文献   
30.
T. Krishnan 《Resonance》1999,4(3):71-73
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号