首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2044篇
  免费   21篇
  国内免费   5篇
教育   671篇
科学研究   1073篇
各国文化   8篇
体育   35篇
综合类   23篇
文化理论   1篇
信息传播   259篇
  2023年   8篇
  2022年   6篇
  2021年   6篇
  2020年   27篇
  2019年   605篇
  2018年   497篇
  2017年   229篇
  2016年   42篇
  2015年   31篇
  2014年   40篇
  2013年   169篇
  2012年   46篇
  2011年   54篇
  2010年   33篇
  2009年   45篇
  2008年   34篇
  2007年   36篇
  2006年   42篇
  2005年   35篇
  2004年   19篇
  2003年   21篇
  2002年   10篇
  2001年   9篇
  2000年   11篇
  1999年   1篇
  1998年   1篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1985年   1篇
  1976年   1篇
排序方式: 共有2070条查询结果,搜索用时 31 毫秒
111.
This paper studies the problems of stability and H∞ model reference tracking performance for a class of asynchronous switched nonlinear systems with uncertain input delay. First, it is assumed switched controller and corresponding piecewise Lyapunov function are unknown but the derivative of piecewise Lyapunov function has a condition; this condition implies that the nominal system (system without input delay and disturbance) is exponentially stable by any switched controller which satisfies this condition. With this assumption, a proper Lyapunov–Krasovskii functional is constructed. By employing this new functional and average dwell time technique, the delay-dependent input-to-state stability criteria are derived under a certain delay bound; in addition, a mechanism which finds the upper bound of input delay is proposed. Finally, a kind of state feedback control law which fulfils condition of aforesaid piecewise Lyapunov function is introduced to guarantee the input-to-state stability and H∞ model reference tracking performance. Simulation examples are presented to demonstrate the efficacy of results.  相似文献   
112.
In this paper, the optimal synchronization controller design problem for complex dynamical networks with unknown system internal dynamics is studied. A necessary and sufficient condition on the existence of the optimal control minimizing a quadratic performance index is given. The optimal control law consists of a feedback control and a compensated feedforward control, and the feedback control gain can be obtained by solving the well-known Algebraic Riccati Equation (ARE). Especially, in the presence of unknown system dynamics, a novel adaptive iterative algorithm using the information of system states and inputs is proposed to solve the ARE to get the optimal feedback control gain. Finally, a simulation example shows the effectiveness of the theoretical results.  相似文献   
113.
Gas flow has fractional order dynamics; therefore, it is reasonable to assume that the pneumatic systems with a proportional valve to regulate gas flow have fractional order dynamics as well. There is a hypothesis that the fractional order control has better control performance for this inherent fractional order system, although the model used for fractional controller design is integer order. To test this hypothesis, a fractional order sliding mode controller is proposed to control the pneumatic position servo system, which is based on the exponential reaching law. In this method, the fractional order derivative is introduced into the sliding mode surface. The stability of the controller is proven using Lyapunov theorem. Since the pressure sensor is not required, the control system configuration is simple and inexpensive. The experimental results presented indicate the proposed method has better control performance than the fractional order proportional integral derivative (FPID) controller and some conventional integral order control methods. Points to be noticed here are that the fractional order sliding mode control is superior to the integral order sliding mode counterpart, and the FPID is superior to the corresponding integral order PID, both with optimal parameters. Among all the methods compared, the proposed method achieves the highest tracking accuracy. Moreover, the proposed controller has less chattering in the manipulated variable, the energy consumption of the controller is therefore substantially reduced.  相似文献   
114.
This paper investigates the H performance of two-dimensional (2-D) switched system represented by Fornasini–Marchesini local state-space (FMLSS) model with maximum and minimum dwell time approach. By using the multiple Lyapunov function approach, and designing a set of switching signals subject to maximum and minimum dwell time characteristic, respectively, for all stable subsystems or both stable and unstable subsystems exist, we give the sufficient condition on exponential stability of the given switched system, and propose the sufficient condition which can guarantee that the given switched system is exponentially stable and has a specified H disturbance attenuation level γ. All the results obtained are on normal noise attenuation index of strictly non-weighted form, which are better than the existing results on weak one of weighted form from the physical point of view. Finally, numerical examples are presented to display the effectiveness of the proposed results.  相似文献   
115.
In this paper, the distributed fault diagnosis (DFD) of networked dynamical systems with time-varying connected topologies, e.g., wireless sensor networks in harsh environments, is considered. Specifically, two essential problems are focused on, which are faced in extending the the decomposition-based adaptive DFD approach to such topology-varying systems. The problems introduced by the time-varying topologies are, respectively, decomposition schemes deterioration and pre-training difficulties. The causes of the two problems are detailed and addressed in our work. First, for the decomposition schemes deterioration problem, a multi-agent dynamics-based online distributed decomposition algorithm are developed, so that a decent decomposed network structure for such topology-varying network can be maintained. Second, to alleviate the pre-training difficulties in topology-varying systems, a fault detection method is proposed, which avoids the need for pre-training. The distributed decomposition algorithm is proved to converge in finite steps, and the proposed fault detection method is verified both theoretically and experimentally.  相似文献   
116.
In this paper, the problem of state and unknown input estimations for a class of discrete-time switched linear systems with average dwell time switching is investigated. First, a proportional integral observer with an exponential H performance is constructed to estimate the system state and unknown input simultaneously. Second, both of the observability and the stability of the estimation error system are analyzed, then the derivation of the observer gain matrices is transformed into the calculation of linear matrix inequalities. Third, the obtained results are extended to the systems with output disturbances. Finally, two simulation examples are provided to show the validity and effectiveness of the proposed methods.  相似文献   
117.
This paper presents an extended state observer-based output feedback adaptive controller with a continuous LuGre friction compensation for a hydraulic servo control system. A continuous approximation of the LuGre friction model is employed, which preserves the main physical characteristics of the original model without increasing the complexity of the system stability analysis. By this way, continuous friction compensation is used to eliminate the majority of nonlinear dynamics in hydraulic servo system. Besides, with the development of a new parameter adaption law, the problems of parametric uncertainties are overcome so that more accurate friction compensation is realized. For another, the developed adaption law is driven by tracking errors and observation errors simultaneously. Thus, the burden of extended state observer to solve the remaining uncertainties is alleviated greatly and high gain feedback is avoided, which means better tracking performance and robustness are achieved. The designed controller handles not only matched uncertainties but also unmatched dynamics with requiring little system information, more importantly, it is based on output feedback method, in other words, the synthesized controller only relies on input signal and position output signal of the system, which greatly reduces the effects caused by signal pollution, measurement noise and other unexpected dynamics. Lyapunov-based analysis has proved this strategy presents a prescribed tracking transient performance and final tracking accuracy while obtaining asymptotic tracking performance in the presence of parametric uncertainties only. Finally, comparative experiments are conducted on a hydraulic servo platform to verify the high tracking performance of the proposed control strategy.  相似文献   
118.
This paper has investigated the input-output finite time stability (IO-FTS) for a class of networked control systems (NCSs) with network-induced delay. To reduce the frequents of packets transmission, a novel memory event-triggered scheme (METS) has been proposed. Different from existing event-triggered schemes, the proposed METS can make use of certain released packets to generate new event. By this way, the event generator can do more precise decision and better control performance can be expected. By using a Lyapunov functional method, sufficient condition for the IO-FTS of NCSs has been derived. Then a co-design method is proposed to obtain the memory feedback gains and parameters of the METS. Finally, a simulation example is carried out and the effectiveness of the designed METS is validated. The IO-FTS of NCSs with solved memory feedback gains is also confirmed.  相似文献   
119.
This paper proves a general structural property of the wavelet tree for a given seminorm in the context of the wavelet packet transform method. This structural property can be used in denoising algorithms of different applications to guarantee the optimality of novel search strategies. The property holds for any input signals using any orthogonal analysing wavelet families. The property holds for any norms, which results to be a convex function through the wavelet tree. Using a defined norms, seminorms or pseudonorms, this property can be used to detect incoherent parts of an input signal by using the minimal depth of the tree. In this sense the proposed denoising procedure works without thresholds for the localisation of different kinds of noise, as well as for a stop criterium for an optimal representation of the incoherency. The proof of this property is performed by mathematical induction and the demonstration is based on orthonormality with the help of the multiresolution framework aspects of the wavelets packet tree. The Theorem is independent of the definition of the adopted norm and of the incoherent part of an input signal. In this sense, the discovered property is a general one, which is related to any norm and any nature of the signal incoherence. It can be used in different applications, in which a minimum of a norm is required to be calculated through the wavelet tree.  相似文献   
120.
This paper investigates the expected static group synchronization problem of the second-order multi-agent systems via pinning control. For directed communication topology with spanning tree, based on Gershgorin disk theorem and the matrix property, a static pinning control protocol with fixed gains is first introduced and some sufficient and necessary static group synchronization criteria are also established. It is worth mentioning that a rigorous proof is also given that only one pinning node is needed to guarantee static group synchronization, which could be inferred that our protocol might be more economical and effective in large scale of multi-agent systems. Then, for weakly connected directed communication topology with nodes of zero in-degree, an adaptive pinning control applied to the node with zero in-degree is also proposed to achieve static group synchronization. Finally, the efficiency of the proposed protocols is verified by two simulation examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号