首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   22篇
教育   134篇
科学研究   2篇
体育   6篇
综合类   1篇
  2024年   1篇
  2023年   3篇
  2022年   9篇
  2021年   11篇
  2020年   4篇
  2019年   8篇
  2018年   7篇
  2017年   6篇
  2016年   1篇
  2015年   1篇
  2014年   9篇
  2013年   12篇
  2012年   9篇
  2011年   15篇
  2010年   6篇
  2009年   11篇
  2008年   19篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2001年   3篇
  1998年   1篇
  1991年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
81.
In 2017, Elon University became one of very few universities in the United States without a medical school to have an in-house Anatomical Gift Program (AGP). The program accepts first-person-consenting individuals only and within 2.5 years has become self-sufficient, supporting anatomy curricular needs of its physical therapy, physician assistant, and undergraduate biology and anthropology programs (n = 21 donors annually). This paper describes the timeline, costs, and benefits of developing an in-house AGP at a university without a medical school. Policy development, public outreach, equipment needs, and cost benefits are discussed. Within 2.5 years of program opening, the AGP Director delivered 161 educational outreach presentations at 86 different venues across the state providing information on anatomical gifting. The program registered 320 individuals (60% female, 40% male) and enrolled 41 deceased donors (69% female, 31% male; average age of 74.6 at time of registration and 74.8 at donation). During the first seven months of the program, donor preparation costs (with outsourcing for transport/donor preparation/document filing/serology testing/cremation) averaged US$ 2,100 per donor. Over the past 23 months, donor preparation has been completed on site, lowering the cost per donor to US$ 1,260. Other costs include personnel salaries, legal fees, and outfitting of the anatomy laboratory and preparatory room. Program benefits include support of anatomy education on campus, assurance that all donors have given first-person consent, and faculty/student access to donor-determined health, social, and occupational information. Faculty, staff, and students contribute to the daily operations of the AGP.  相似文献   
82.
Spatial abilities have been correlated to anatomy knowledge assessment and spatial training has been found to improve spatial abilities in previous systematic reviews. The objective of this systematic review was to evaluate spatial abilities training in anatomy education. A literature search was done from inception to 3 August 2017 in Scopus® and several databases on the EBSCOhost platform. Citations were reviewed and those involving anatomy education, an intervention, and a spatial abilities test were retained and the corresponding full-text articles were reviewed for inclusion. Before and after training studies, as well as comparative training programs, relating a spatial training intervention to spatial abilities were eligible. Of the 2,405 citations obtained, 52 articles were identified and reviewed, yielding eight eligible articles. Instruction in anatomy and mental rotations training were found to improve spatial abilities. For the seven studies retained for the meta-analysis that included the effect of interventions on spatial abilities test scores, the pooled treatment effect difference was 0.49 (95% CI [0.17; 0.82]; n = 11) improvement. For the two studies that included the practice effect on spatial abilities test scores in a control group, the pooled treatment effect difference was 0.47 (95% CI [−0.03; 0.97]; n = 2) improvement. In these two studies, the impact of the intervention on spatial abilities test scores was found despite the practice effect. Evidence was found for improvement of spatial abilities in anatomy education using instruction in anatomy and mental rotations training.  相似文献   
83.
Anatomical education has suffered from reduced teaching time and poor availability of staff and resources over the past thirty years. Clay-based modeling (CBM) is an alternative technique for teaching anatomy that can improve student knowledge and experience. This systematic review aimed to summarize and appraise the quality of the literature describing the uses, advantages, and limitations of CBM compared to alternative methods of teaching human gross anatomy to students or qualified healthcare professionals. A systematic search of Embase, MEDLINE, Scopus, and Web of Science databases was conducted, and the Medical Education Research Quality Instrument (MERSQI) was used to assess study quality. Out of the 829 studies identified, 12 papers met the inclusion criteria and were eligible for this review. The studies were of high quality, with a mean MERSQI score of 11.50/18. Clay-based modeling can be used to teach all gross anatomical regions, and 11 studies demonstrated a significant improvement in short-term knowledge gain in students who used CBM in comparison to other methods of learning anatomy. Eight studies that included subjective assessment showed that CBM is rated highly. However, some studies showed that students viewed CBM as juvenile and experienced difficulty making the models. Additionally, there is no evidence to suggest that CBM improves long-term knowledge. Clay-based modeling is an effective learning method for human gross anatomy and should be incorporated into the anatomists' toolkit. In the future, more randomized controlled studies with transparent study designs investigating the long-term impact of CBM are needed.  相似文献   
84.
Neuroanatomy is difficult for psychology students because of spatial visualization and the relationship among brain structures. Some technologies have been implemented to facilitate the learning of anatomy using three-dimensional (3D) visualization of anatomy contents. Augmented reality (AR) is a promising technology in this field. A mobile AR application to provide the visualization of morphological and functional information of the brain was developed. A sample of 67 students of neuropsychology completed tests for visuospatial ability, anatomical knowledge, learning goals, and experience with technologies. Subsequently, they performed a learning activity using one of the visualization methods considered: a 3D method using the AR application and a two-dimensional (2D) method using a textbook to color, followed by questions concerning their satisfaction and knowledge. After using the alternative method, the students expressed their preference. The two methods improved knowledge equally, but the 3D method obtained higher satisfaction scores and was more preferred by students. The 3D method was also more preferred by the students who used this method during the activity. After controlling for the method used in the activity, associations were found between the preference of the 3D method because of its usability and experience with technologies. These results found that the AR application was highly valued by students to learn and was as effective as the textbook for this purpose.  相似文献   
85.
Augmented reality (AR) has recently been utilized as an integrative teaching tool in medical curricula given its ability to view virtual objects while interacting with the physical environment. The evidence for AR in medical training, however, is limited. For this reason, the purpose of this mixed method study was to evaluate the implementation of overlaying donor-specific diagnostic imaging (DSDI) onto corresponding body donors in a fourth-year, dissection-based, medical elective course entitled anatomy for surgeons (AFS). Students registered in AFS course were separated into groups, receiving either DSDI displayed on Microsoft HoloLens AR head-mounted display (n = 12) or DSDI displayed on iPad (n = 15). To test for the change in spatial ability, students completed an anatomical mental rotation test (AMRT) prior to and following the AFS course. Students also participated in a focus group discussion and completed a survey at the end of AFS, analyzed through thematic triangulation and an unpaired, Mann Whitney U test respectively, both addressing dissection experience, DSDI relevancy to dissection, and use of AR in anatomical education. Although statistically significant differences were not found when comparing student group AMRT scores, survey and discussion data suggest that the HoloLens had improved the students' understanding of, and their spatial orientation of, anatomical relationships. Trunk dissection quality grades were significantly higher with students using the HoloLens. Although students mentioned difficulties with HoloLens software, with faculty assistance, training, and enhanced software development, there is potential for this AR tool to contribute to improved dissection quality and an immersive learning experience.  相似文献   
86.
Multimedia and simulation programs are increasingly being used for anatomy instruction, yet it remains unclear how learning with these technologies compares with learning with actual human cadavers. Using a multilevel, quasi‐experimental‐control design, this study compared the effects of “Anatomy and Physiology Revealed” (APR) multimedia learning system with a traditional undergraduate human cadaver laboratory. APR is a model‐based multimedia simulation tool that uses high‐resolution pictures to construct a prosected cadaver. APR also provides animations showing the function of specific anatomical structures. Results showed that the human cadaver laboratory offered a significant advantage over the multimedia simulation program on cadaver‐based measures of identification and explanatory knowledge. These findings reinforce concerns that incorporating multimedia simulation into anatomy instruction requires careful alignment between learning tasks and performance measures. Findings also imply that additional pedagogical strategies are needed to support transfer from simulated to real‐world application of anatomical knowledge. Anat Sci Educ 7: 331–339. © 2014 American Association of Anatomists.  相似文献   
87.
The purpose of this study was to examine the application of anatomy and neuroanatomy knowledge to current practice of speech‐language pathology (SLP), based on the perceptions of practicing SLPs, and to elicit information on participants' experiences of learning these subjects in their primary SLP degree with a view to inform potential curriculum development. A qualitative approach was taken to the collection of data. Eight practicing SLPs from four settings were interviewed. The critical incident technique, together with further probing, was used to elicit information. Interviews were transcribed and later thematically analyzed. This study found that knowledge of anatomy and neuroanatomy was perceived to be important by SLPs across all settings, to varying degrees, with a greater application in acute hospital settings. Negative experiences in studying this material were reported across all settings regardless of country of study. Participants discussed ways to increase students' motivation to learn this challenging material. Relevance of material demanded by students may be enhanced if active learning methods were used to teach anatomy/neuroanatomy, including case‐based learning and with vertical and horizontal integration of material to provide a cohesive, spiral curriculum. Anat Sci Educ. 7: 28–37. © 2013 American Association of Anatomists.  相似文献   
88.
Curricular changes continue at United States medical schools and directors of gross anatomy, microscopic anatomy, neuroscience/neuroanatomy, and embryology courses continue to adjust and modify their offerings. Developing and supplying data related to current trends in anatomical sciences education is important if informed decisions are going to be made in a time of curricular and course revision. Thus, a survey was sent to course directors during the 2012–2013 academic years to gather information on total course hours, lecture and laboratory hours, the type of laboratory experiences, testing and competency evaluation, and the type of curricular approach used at their institution. The data gathered were compared to information obtained from previous surveys and conclusions reached were that only small or no change was observed in total course, lecture and laboratory hours in all four courses; more gross anatomy courses were part of an integrated curriculum since the previous survey; virtual microscopy with and without microscopes was the primary laboratory activity in microscopic anatomy courses; and neuroscience/neuroanatomy and embryology courses were unchanged. Anat Sci Educ 7: 321–325. © 2014 American Association of Anatomists.  相似文献   
89.
Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e‐learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and contemporary teaching methods and tools are largely unknown. This study quantified medical student and anatomy faculty opinion on various aspects of anatomical teaching at the Department of Anatomy, University of Bristol, UK. A questionnaire was used to explore the perceived effectiveness of different anatomical teaching methods and tools among anatomy faculty (AF) and medical students in year one (Y1) and year two (Y2). A total of 370 preclinical medical students entered the study (76% response rate). Responses were quantified and intergroup comparisons were made. All students and AF were strongly in favor of access to cadaveric specimens and supported traditional methods of small‐group teaching with medically qualified demonstrators. Other teaching methods, including e‐learning, anatomical models and surgical videos, were considered useful educational tools. In several areas there was disharmony between the opinions of AF and medical students. This study emphasizes the importance of collecting student preferences to optimize teaching methods used in the undergraduate anatomy curriculum. Anat Sci Educ 7: 262–272. © 2013 American Association of Anatomists.  相似文献   
90.
Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and discussed during integrated second‐year neuroanatomy, neuroradiology, and neurosurgery lectures over the 2008–2011 period. Anonymous questionnaires, evaluated according to the Likert scale, demonstrated that students appreciated this teaching procedure. Academic performance (examination grades for neuroanatomy) of the students who attended all integrated lectures of neuroanatomy, was slightly though significantly higher compared to that of students who attended these lectures only occasionally or not at all (P=0.04). Significantly better results were obtained during the national progress test (focusing on morphology) by students who attended the MRI/DTI‐assisted lectures, compared to those who did so only in part or not at all, compared to the average student participating in the national test. These results were obtained by students attending the second, third and, in particular, the fourth year (P≤0.0001) courses during the three academic years mentioned earlier. This integrated neuroanatomy model can positively direct students in the direction of their future professional careers without any extra expense to the university. In conclusion, interactive learning tools, such as lectures integrated with intraoperative MRI/DTI images, motivate students to study and enhance their neuroanatomy education. Anat Sci Educ 6: 294–306. © 2013 American Association of Anatomists.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号