首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   9篇
  国内免费   8篇
教育   220篇
科学研究   21篇
体育   219篇
综合类   83篇
信息传播   2篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   8篇
  2018年   11篇
  2017年   11篇
  2016年   17篇
  2015年   10篇
  2014年   19篇
  2013年   82篇
  2012年   22篇
  2011年   33篇
  2010年   18篇
  2009年   29篇
  2008年   38篇
  2007年   31篇
  2006年   36篇
  2005年   22篇
  2004年   25篇
  2003年   25篇
  2002年   13篇
  2001年   21篇
  2000年   11篇
  1999年   3篇
  1998年   8篇
  1997年   5篇
  1996年   5篇
  1995年   9篇
  1994年   4篇
  1993年   5篇
  1992年   7篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有545条查询结果,搜索用时 15 毫秒
191.
Mining direct antagonistic communities in signed social networks   总被引:1,自引:1,他引:0  
Social networks provide a wealth of data to study relationship dynamics among people. Most social networks such as Epinions and Facebook allow users to declare trusts or friendships with other users. Some of them also allow users to declare distrusts or negative relationships. When both positive and negative links co-exist in a network, some interesting community structures can be studied. In this work, we mine Direct Antagonistic Communities (DACs) within such signed networks. Each DAC consists of two sub-communities with positive relationships among members of each sub-community, and negative relationships among members of the other sub-community. Identifying direct antagonistic communities is an important step to understand the nature of the formation, dissolution, and evolution of such communities. Knowledge about antagonistic communities allows us to better understand and explain behaviors of users in the communities.  相似文献   
192.
Abstract

The two major sports indigenous to Ireland are Gaelic football and hurling. Both are 15-a-side field games played on a pitch 40% longer than a soccer field. They are firmly linked to a nationalist tradition and have by far the highest participation rates in sports in the country. Both games make multiple demands on participants due to their free-flowing nature and quick movement of play from end to end of the pitch. Hurling calls for hand–eye coordination and skilled use of the hurling stick in hitting and blocking the ball. Fitness characteristics mirror game demands. Participants at elite level in both games display high aerobic power, the footballers tending to be stronger in the upper body and better in vertical jumping. Gaelic footballers in particular match the fitness characteristics of professional soccer players, except for sprinting speed. Less attention has been paid to female participants, especially in camogie, the female version of hurling. Despite their amateur status, and due to the popularity of the sports and the training regimens adopted by players, the games have garnered sports science support systems for elite performers. Support personnel benefit from a generic knowledge base as well as a burgeoning research agenda targeted at the Gaelic games.  相似文献   
193.
Abstract

The ageing neuromuscular system is affected by structural and functional changes that lead to a general slowing down of neuromuscular performance and an increased risk of falling. As a consequence, the process of ageing results in a reduced ability to develop maximal and explosive force, as well as in deficits in static and dynamic postural control. A decrease in the number and size of type II fibres in particular accounts for the age-related decline in muscle mass (sarcopaenia) and strength performance. Multiple denervation and re-innervation processes of muscle fibres seem to be responsible for the reduced number of muscle fibres. Recently, it has been suggested that it is not the decline in motoneurons that accounts for the loss in number of muscle fibres but the disturbed potential of fibre regeneration and re-innervation. Furthermore, an age-related reduction in the number of satellite cells has also been associated with sarcopaenia. The ability to compensate for platform and gait perturbations deteriorates with ageing as reflected in longer onset latencies and inefficient postural responses. All sites within the somatosensory system are affected by ageing and therefore contribute to postural instability. However, morphological changes of muscle spindles appear primarily to be responsible for the impaired ability to compensate for balance threats in old age. Given these neuromuscular limitations in old age, it is important to apply adequate training interventions that delay or even reverse the onset of these constraints. Strength training has the potential to enhance maximal as well as explosive force production capacity. This is accomplished by neural factors, including an improved recruitment pattern, discharge rate, and synchronization of motor units. Furthermore, an increase in number of satellite cells most likely accounts for training-induced muscle hypertrophy. Recent studies have investigated the impact of balance training in old age on the ability to develop maximal and explosive force. In addition, the effects of balance training on reflex activity during gait perturbations were also examined. Increases in maximal and explosive force production capacity and an improved ability to compensate for gait perturbations were observed. It is evident from the literature that researchers are increasingly studying the effects of more specifically designed training programmes on performance in populations of older adults. Thus, in the near future, strength training could be replaced by high-velocity forms of power training and balance training by perturbation-based training programmes. It is hypothesized that this new approach is more efficient in terms of fall prevention than the traditional approach.  相似文献   
194.
Abstract

The purpose of this study was to investigate the time course of the changes of muscle-tendon mechanical properties and the function responses of the plantar flexor muscles following 5?×?60?s of static stretching.

Fourteen healthy volunteers were tested on four separate days in a random order with three different rest times (0, 5, 10?min) after 5?×?60?s of stretching or following a control period without stretching. During each test, the dorsiflexion range of motion (RoM), passive resistive torque (PRT), and maximum voluntary contraction (MVC) were measured with a dynamometer. Ultrasonography of the gastrocnemius medialis (GM) muscle-tendon junction displacement and motion capture allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate their stiffness.

We observed an increase in RoM and decrease in MVC at 0, 5, and 10?min post-stretching. This could be attributed to an increase in muscle elongation which lasted at least 10?min. A decrease in muscle-tendon stiffness was observed immediately, but not 5 or 10?min after the stretching. A decrease in PRT and muscle stiffness was observed up to 5?min after the stretching. No changes were detected in tendon stiffness or in any variable in the control group.

The effects of a 5?×?60?s static stretching exercise changes the muscle-tendon functions (RoM, MVC), which are related to mechanical changes of the muscle but not the tendon structure, respectively. Although the functional changes last for at least 10?min, changes in muscle stiffness were only observed up to 5?min after the stretching exercise.  相似文献   
195.
Fatigue represents a reduction in the capability of muscle to generate force. The aim of the present study was to establish the effects of exercise that simulates the work rate of competitive soccer players on the strength of the knee extensors and knee flexors. Thirteen amateur soccer players (age 23.3±3.9 years, height 1.78±0.05?m, body mass 74.8±3.6?kg; mean±s) were tested during the 2000–2001 soccer season. Muscle strength of the quadriceps and hamstrings was measured on an isokinetic dynamometer. A 90?min soccer-specific intermittent exercise protocol, incorporating a 15?min half-time intermission, was developed to provide fatiguing exercise corresponding in work rate to a game of soccer. The exercise protocol, performed on a programmable motorized treadmill, consisted of the different intensities observed during soccer match-play (e.g. walking, jogging, running, sprinting). Muscle strength was assessed before exercise, at half-time and immediately after exercise. A repeated-measures analysis of variance showed significant reductions (P?<0.001) in peak torque for both the quadriceps and hamstrings at all angular velocities (concentric: 1.05, 2.09, 5.23 rad?·?s?1; eccentric: 2.09 rad?·?s?1). The peak torque of the knee extensors (KE) and knee flexors (KF) was greater before exercise [KE: 232±37, 182±34, 129±27, 219±41?N?·?m at 1.05, 2.09 and 5.23 rad?·?s?1 (concentric) and 2.09 rad?·?s?1 (eccentric), respectively; KF: 126±20, 112±19, 101±16, 137±23?N?·?m] than at half-time (KE: 209±45, 177±35, 125±36, 214±43?N?·?m; KF: 114±31, 102±20, 92±15, 125±25?N?·?m) and greater at half-time than after exercise (KE: 196±43, 167±35, 118±24, 204±43?N?·?m; KF: 104±25, 95±21, 87±13, 114±27?N?·?m). For the hamstrings?:?quadriceps ratio, significant changes were found (P?<0.05) for both legs, the ratio being greater before than after exercise. For fast?:?slow speed and left?:?right ratios, no significant changes were found. We conclude that there is a progressive reduction in muscle strength that applies across a range of functional characteristics during exercise that mimics the work rate in soccer.  相似文献   
196.
The aim of this study was to examine joint power generation during a concentric knee extension isokinetic test and a squat vertical jump. The isokinetic test joint power was calculated using four different methods. Five participants performed concentric knee extensions at 0.52, 1.57, 3.14 and 5.23 rad?·?s?1 on a Lido isokinetic dynamometer. The squat vertical jump was performed on a Kistler force plate. Kinematic data from both tests were collected and analysed using an ELITE optoelectronic system. An inverse dynamics model was applied to measure knee joint moment in the vertical jump. Knee angular position data from the kinematic analysis in the isokinetic test were used to derive the actual knee angular velocity and acceleration, which, in turn, was used to correct the dynamometer moment for inertial effects. Power was measured as the product of angular velocity and moment at the knee joint in both tests. Significant differences (P <?0.05) were found between mean (?± s) peak knee joint power in the two tests (squat vertical jump: 2255?±?434W; isokinetic knee extension: 771?±?81W). Correlation analysis revealed that there is no relationship between the peak knee joint power during the vertical jump and the slow velocity isokinetic tests. Higher isokinetic velocity tests show better relationships with the vertical jump but only if the correct method for joint power calculation is used in the isokinetic test. These findings suggest that there are important differences in muscle activation and knee joint power development that must be taken into consideration when isokinetic tests are used to predict jumping performance.  相似文献   
197.
Abstract

In this study, we investigated the effect of biological maturation on maximal oxygen uptake ([Vdot]O2max) and ventilatory thresholds (VT1 and VT2) in 110 young soccer players separated into pubescent and post-pubescent groups.. Maximal oxygen uptake and [Vdot]O2 corresponding to VT1 and VT2 were expressed as absolute values, ratio standards, theoretical exponents, and experimentally observed exponents. Absolute [Vdot]O2 (ml · min?1) was different between groups for VT1, VT2, and [Vdot]O2max. Ratio standards (ml · kg?1 · min?1) were not significantly different between groups for VT1, VT2, and [Vdot]O2max. Theoretical exponents (ml · kg?0.67 · min?1 and ml · kg?0.75 · min?1) were not properly adjusted for the body mass effects on VT1, VT2, and [Vdot]O2max. When the data were correctly adjusted using experimentally observed exponents, VT1 (ml · kg?0.94 · min?1) and VT2 (ml · kg?0.95 · min?1) were not different between groups. The experimentally observed exponent for [Vdot]O2max (ml · kg?0.90 · min?1) was different between groups (P = 0.048); however, this difference could not be attributed to biological maturation. In conclusion, biological maturation had no effect on VT1, VT2 or [Vdot]O2max when the effect of body mass was adjusted by experimentally observed exponents. Thus, when evaluating the physiological performance of young soccer players, allometric scaling needs to be taken into account instead of using theoretical approaches.  相似文献   
198.
Abstract

The purpose of this study was to assess the relationships among ventilatory threshold T(vent), running economy and distance running performance in a group (N=9) of trained experienced male runners with comparable maximum oxygen uptake ([Vdot]O2 max). Maximal oxygen uptake and submaximal steady state oxygen uptake were measured using open circuit spirometry during treadmill exercise. Ventilatory threshold was determined during graded treadmill exercise using non-invasive techniques, while distance running performance was assessed by the best finish time in two 10-kilometer (km) road races. The subjects averaged 33.8 minutes on the 10km runs, 68.6 ml · kg -1 · min -1 for [Vdot]O2 max, and 48.1 ml · kg -1 · min -1 for steady state [Vdot]O2 running at 243 meters · min -1. The T(vent) (first deviation from linearity of [Vdot]E, [Vdot]CO 2 ) occurred at an oxygen consumption of 41.9 ml · kg -1 · min -1. The relationship between running economy and performance was r = .51 (p>0.15) and the relationship between T(vent) and performance was r = .94 (p < 0.001). Applying stepwise multiple linear regression, the multiple R did not increase significantly with the addition of variables to the T(vent); however, the combination of [Vdot]O2 max, running economy and T(vent) was determined to account for the greatest amount of total variance (89%). These data suggest that among trained and experienced runners with similar [Vdot]O2 max, T(vent) can account for a large portion of the variance in performance during a 10km race.  相似文献   
199.
The benefits of living and training at altitude (HiHi) for an improved altitude performance of athletes are clear, but controlled studies for an improved sea-level performance are controversial. The reasons for not having a positive effect of HiHi include: (1) the acclimatization effect may have been insufficient for elite athletes to stimulate an increase in red cell mass/haemoglobin mass because of too low an altitude (<2000-2200 m) and/or too short an altitude training period (<3-4 weeks); (2) the training effect at altitude may have been compromised due to insufficient training stimuli for enhancing the function of the neuromuscular and cardiovascular systems; and (3) enhanced stress with possible overtraining symptoms and an increased frequency of infections. Moreover, the effects of hypoxia in the brain may influence both training intensity and physiological responses during training at altitude. Thus, interrupting hypoxic exposure by training in normoxia may be a key factor in avoiding or minimizing the noxious effects that are known to occur in chronic hypoxia. When comparing HiHi and HiLo (living high and training low), it is obvious that both can induce a positive acclimatization effect and increase the oxygen transport capacity of blood, at least in 'responders', if certain prerequisites are met. The minimum dose to attain a haematological acclimatization effect is >12 h a day for at least 3 weeks at an altitude or simulated altitude of 2100-2500 m. Exposure to hypoxia appears to have some positive transfer effects on subsequent training in normoxia during and after HiLo. The increased oxygen transport capacity of blood allows training at higher intensity during and after HiLo in subsequent normoxia, thereby increasing the potential to improve some neuromuscular and cardiovascular determinants of endurance performance. The effects of hypoxic training and intermittent short-term severe hypoxia at rest are not yet clear and they require further study.  相似文献   
200.
Abstract

The aims of the study were to: (1) adapt the “double-push” technique from inline skating to cross-country skiing; (2) compare this new skiing technique with the conventional skate skiing cross-country technique; and (3) test the hypothesis that the double-push technique improves skiing speed in a short sprint. 13 elite skiers performed maximum-speed sprints over 100 m using the double-push skate skiing technique and using the conventional “V2” skate skiing technique. Pole and plantar forces, knee angle, cycle characteristics, and electromyography of nine lower body muscles were analysed. We found that the double-push technique could be successfully transferred to cross-country skiing, and that this new technique is faster than the conventional skate skiing technique. The double-push technique was 2.9 ± 2.2% faster (P < 0.001), which corresponds to a time advantage of 0.41 ± 0.31 s over 100 m. The double-push technique had a longer cycle length and a lower cycle rate, and it was characterized by higher muscle activity, higher knee extension amplitudes and velocities, and higher peak foot forces, especially in the first phase of the push-off. Also, the foot was more loaded laterally in the double-push technique than in the conventional skate skiing technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号