首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
教育   4篇
  2014年   4篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
The primary focus of this article is to illustrate how teachers can use contemporary socio-scientific issues to teach students about nature of scientific knowledge as well as address the science subject matter embedded in the issues. The article provides an initial discussion about the various aspects of nature of scientific knowledge that are addressed. It is important to remember that the aspects of nature of scientific knowledge are not considered to be a comprehensive list, but rather a set of important ideas for adolescent students to learn about scientific knowledge. These ideas have been advocated as important for secondary students by numerous reform documents internationally. Then, several examples are used to illustrate how genetically based socio-scientific issues can be used by teachers to improve students’ understandings of the discussed aspects of nature of scientific knowledge.  相似文献   
3.

Recent years have witnessed a dramatic rise in the number of middle and high school students from Asian countries participating in U.S.-based summer experiences (Perlez &; Gao, 2013). Although summer science camps have been shown to improve students’ attitudes and interests related to science and science learning (Bhattacharyya, Mead &; Nathaniel, School Science and Mathematics 111:345–353, 2011; Fields, International Journal of Science Education 31:151–171, 2009; Gibson &; Chase, Science Education 86:693–705, 2002; Luehmann, International Journal of Science Education 31:1831–1855, 2009), whether there are cognitive gains for visiting students in these short-term experiences is not well understood (Liu &; Lederman, School Science and Mathematics 102:114–123, 2002; Williams, Ma, Prejean, Ford &; Lai, Journal of Research on Technology in Education 40:201–216, 2007). This study explored the efficacy of a U.S. summer science camp to engender improved understandings about scientific inquiry (SI) among a group of gifted Taiwanese students (n = 19) in grades 8 and 9. Participants were completing an 80-h summer science camp at a Midwestern U.S. university. The Views About Scientific Inquiry (VASI) questionnaire (Lederman, Lederman, Bartos, Bartels, Antink Meyer &; Schwartz, Journal of Research in Science Teaching 51:65–83, 2014) was used to capture students’ views before and after camp participation, with modest gains evident for five of the eight aspects of scientific inquiry assessed. These gains were related to scientific investigations beginning with a question, the multiple methods of science, the role of the question in guiding procedures, the distinction between data and evidence, and the combination of data and what is already known in the development of explanations. Implications for the structure of science camps for supporting the development of SI understandings among students from Asian classrooms, and in general, are discussed.

  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号