首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
教育   3篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Students' motivation plays an important role in successful science learning. However, motivation is a complex construct. Theories of motivation suggests that students' motivation must be conceptualized as a motivational system with numerous components that interact in complex ways and influence metacognitive processes such as self-evaluation. This complexity is further increased because students' motivation and success in science learning influence each other as they develop over time. It is challenging to study the co-development of motivation and learning due to these complex interactions which can vary widely across individuals. Recently, person-centered approaches that capture students' motivational profiles, that is, the multiplicity of motivational factors as they co-occur in students, have been successfully used in educational psychology to better understand the complex interplay between the co-development of students' motivation and learning. We employed a person-centered approach to study how the motivational profiles, constructed from goal-orientation, self-efficacy, and engagement data of N = 401 middle school students developed over the course of a 10-week energy unit and how that development was related to students' learning. We identified four characteristic motivational profiles with varying temporal stability and found that students' learning over the course of the unit was best characterized by considering the type of students' motivational profiles and the transitions that occurred between them. We discuss implications for the design and implementation of interventions and future research into the complex interplay between motivation and learning.  相似文献   
2.
Energy is a central concept in science in every discipline and also an essential player in many of the issues facing people everywhere on the globe. However, studies have shown that by the end of K-12 schooling, most students do not reach the level of understanding required to be able to use energy to make sense of a wide range of phenomena. Many researchers have questioned whether the conceptual foundations of traditional approaches to energy instruction may be responsible for students' difficulties. In response to these concerns, we developed and tested a novel approach to middle school physical science energy instruction that was informed by the recommendations of the Framework for K-12 Science Education (National Research Council, 2012a) and the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013). This new approach differs substantially from more traditional approaches to energy instruction in that it does not require energy forms and it emphasizes connections between energy, systems, and fields that mediate interaction-at-a-distance. We investigated student learning during this novel approach and contrasted it with student learning within a comparable unit based on a more traditional approach to energy instruction. Our findings indicate that students who learned in the new approach outperformed students who learned in the traditional approach in every quantitative and qualitative aspect considered in this study, irrespective of their prior knowledge of energy. They developed more parsimonious knowledge networks in relation to energy that focused primarily around the concept of energy transfer. This study warrants further investigation into the value of this new approach to energy instruction in both middle and high school.  相似文献   
3.
Science & Education - Uncertainty is ubiquitous in science, but scientific knowledge is often represented to the public and in educational contexts as certain and immutable. This contrast can...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号