首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
教育   2篇
  2011年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
It is hard and getting harder to strike a satisfying balance in teaching. Time dedicated to student-generated models or ideas is often sacrificed in an effort to “get through the syllabus.” I describe a series of RNA interference (RNAi) experiments for undergraduate students that simultaneously explores fundamental concepts in gene regulation, develops cutting-edge laboratory skills, and embraces student-directed learning. Students design a small interfering RNA (siRNA) against luciferase, add it to cells expressing this gene, and then quantitatively assess the siRNA's effect on both intended and unintended targets, using a luciferase assay and a DNA microarray. Because both RNAi and microarray technologies are relatively new, with no clear consensus on their analysis or limitations, students are encouraged to explore different approaches to the design of their reagents and interpretations of their data. The ability to creatively formulate a hypothesis-driven experimental approach to a scientific question and to critically evaluate collected data is stressed. Equally important, this experiment emphasizes how modern scientific ideas emerge, are debated, tested, and decided.  相似文献   
2.
Unlike students in other engineering disciplines, undergraduates in biological engineering typically have limited opportunity to develop design competencies, and even fewer chances to implement their designed projects. The international Genetically Engineered Machines (iGEM) competition is a student Synthetic Biology competition that, in 2009, included 110 teams from across Asia, Europe, Latin America, and the US. Working at their own schools over the summer, the students use a kit of biological parts from the Registry of Standard Biological Parts, as well as new parts of their own design, to build biological systems that operate in living cells. Two years of survey data collected from undergraduates after their iGEM experiences in 2007 and 2008 suggest that both learning and identity as a biological engineer increase as a result of iGEM.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号