首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
教育   2篇
科学研究   8篇
  2020年   1篇
  2016年   1篇
  2014年   5篇
  2013年   3篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Educational technology research and development - This paper studies learners’ emotion awareness in university level academic contexts as a first step to help learners regulate their...  相似文献   
2.
In the present study, paclitaxel was archaeosomed to reduce side effects and improve its therapeutic index. Carriers have made a big evolution in treatment of many diseases in recent years. Lipid carriers are of special importance among carriers. Archaeosome is one of the lipid carriers. Paclitaxel is one of the drugs used to treat breast cancer which has some unwanted side effects despite its therapeutic effects. Archaeosomes were extracted from methanogenic archi bacteria and synthesized with a certain ratio of paclitaxel in PBS. The mean diameter of archaeosomal paclitaxel was measured by Zeta sizer instrument, Drug releasing of archaeosomal paclitaxel was examined within 26 h which results showed that the most drug releasing occurs during first 3 h. The cytotoxicity effect of archaeosomal paclitaxel on breast cancer’s cell line was evaluated by MTT assay which results showed that the cytotoxicity effect of archaeosomal paclitaxel on breast cancer’s cell line is more than that of the standard paclitaxel formulation. The results indicated that new drug delivery of paclitaxel using archaeosome, increases the therapeutic index of the drug.  相似文献   
3.
Regarding that the breast cancer is the most prevalent disease among women, paclitaxel, an anti-cancer drug, could be used in treatment of this disease. As paclitaxel has adverse effects, it was used of nanoliposome drug delivery technology in order to reduce adverse effects and improve drug efficacy. Certain ratios of phosphatidylcholine, cholesterol and paclitaxel were synthesized to prepare nanoliposomal paclitaxel. Using Zeta sizer device, the mean diameter of nanoliposomal paclitaxel was obtained 421.4 nm and its encapsulation efficiency was 91.3 %. By dialysis, drug release in nanoliposome paclitaxel formulation within 28 h was studied which was 5.53 %. This study showed that cytotoxicity effect of nanoliposomal paclitaxel is more than that of the standard form.  相似文献   
4.
5.
This study is aimed to investigate the nanoliposomal artemisinin preparation, and its implementation on breast cancer cells. Side effects have been one of the common challenges of drug usage, as well as cancer treatment. In order to reduce such effects, nanotechnology has been a great help. Nanoliposomes are provided through reverse phase evaporation. In this method, certain proportions of phosphatidylcholine, cholesterol and artemisinin were mixed together. Besides, the obtained formulation was pegylated by using polyethylene glycol 2000 in order to increase its stability and solubility. The mean diameter of non-pegylated and pegylated liposomal artemisinin was determined by Zeta sizer system. The percent of drug released from liposome was performed by dialysis. The encapsulation efficiency of both formulations was estimated by spectrophotometry method. As a result, encapsulation and drug release of nanoliposomal formulation were more than the pegylation of the same formulation. In addition, this study indicated that cytotoxicity effect of pegylated nanoliposomal artemisinin was more, in comparison with nanoliposomal artemisinin.  相似文献   
6.
It is clear that cancer is one of the most mortal diseases in the world and the most prevalent among women is breast cancer. As hydroxyurea (HU)—a drug which is used in chemotherapy—has many adverse effects in long-term despite of its therapeutic properties, we made use of nano drug delivery technology in order to reduce adverse effects and increase therapeutic index. Thus, liposomation is a novel way in drug delivery systems. In this study a mixture of phosphatidylcholine and cholesterol was mixed and HU was added to the resultant mixture. The mean diameter of the nanoliposomal HU measured with the Zeta Sizer device (equal to 402.5 nm) and its encapsulation efficiency was 70.8 %. Besides, using dialysis, the pattern of drug release from nanoliposomes has been studied and the results showed that the drug release of nanoliposomal drug within 28 h was equal to 25.85 %. This study showed that the cytotoxicity effect of nanoliposomal drug is more than that of the standard drug.  相似文献   
7.
Breast cancer is one of the most frequent cancer types within women population. Hydroxyurea (HU) is a chemotherapy compound for treatment of patients with cancer diagnosis, including breast cancer associated with several adverse effects. In this study, we applied nanotechnology to decreased drug side effects along with improvement of therapeutic index. Liposomation is widely used in modern pharmacological developments in order to enhance the effects of the drugs. To achieve this, in this study a mixture of phosphatidylcholine and cholesterol was made up and HU was added to the resultant mixture, was then pegylated using Polyethylene Glycol 2000 to increase resistance, applicability and solubility. The mean diameters of nanoliposomal and pegylated nanoliposomal HU were measured by Zeta sizer device and obtained about 402.5 and 338.2 nm. The efficiency of non-pegylated and pegylated liposomal HU was 70.8 and 64.2, respectively. Releasing HU in both formulations was estimated about 25.8 and 21.7 %. Also, this study investigated the cytotoxicity effect of nanoliposomal and pegylated nanoliposomal HU using MTT assay. Results of this investigation showed that the cytotoxic properties of pegylated HU was 3.6 % more than those non-pegylated form, while was 38.93 % more than ordinary from of HU. This study showed that the stability, releasing pattern and cytotoxicity of the pegylated nanoliposomal HU is better than that of nanoliposomal HU.  相似文献   
8.
Nano carriers have greatly revolutionized the treatment of most diseases recently. One of these nano carriers, liposomes, has got particular significance. On the other hand, Artemisinin which is used as an effective anticancer drug has some side effects. To reduce such side effects, liposomes can be employed. In order to prepare pegylated nanoliposomal artemisinin, particular proportions of phosphatidylcholine, polyethylene glycol 2000 and artemisinin were combined. As a result, the mean diameter of nano liposomes is 455 nm. Besides, the encapsulation efficiency and the drug release from pegylated nanoliposomes for pegylated nanoliposomal artemisinin are respectively 91.62 ± 3.5 and 5.17 %. The results also show that IC50 of the produced formulation is less than that of the standard drug. This study reveals that the amount of artemisinin cytotoxicity compared to standard drug is increased by pegylated nanoliposomal formulation.  相似文献   
9.
Dealing with learners who prefer to take the back seat and avoid classroom participation can be every teacher's nightmare. This lack of participation may cause teacher frustration, and possibly the only way to reduce this lack of participation is to access the concept of avoidance strategy. Avoidance strategy is the abandonment of a classroom task by learners due to causes such as the task difficulty, topical knowledge, shyness, anxiety, face-saving, fear of negative evaluation, and peer pressure. This article provides an enhanced understanding of the notion of avoidance strategy, presents factors resulting in avoidance behavior, and offers strategies teachers can employ to reduce student use of avoidance behaviors. Reducing student anxiety, motivating learners, teacher support, group work, and pushing toward production are among the possible paths that may help reduce avoidance strategy use in the classrooms.  相似文献   
10.
We present an analytic technique for probing protein-catalyzed transient DNA loops that is based on nanofluidic channels. In these nanochannels, DNA is forced in a linear configuration that makes loops appear as folds whose size can easily be quantified. Using this technique, we study the interaction between T4 DNA ligase and DNA. We find that T4 DNA ligase binding changes the physical characteristics of the DNA polymer, in particular persistence length and effective width. We find that the rate of DNA fold unrolling is significantly reduced when T4 DNA ligase and ATP are applied to bare DNA. Together with evidence of T4 DNA ligase bridging two different segments of DNA based on AFM imaging, we thus conclude that ligase can transiently stabilize folded DNA configurations by coordinating genetically distant DNA stretches.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号