首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
教育   15篇
  2015年   1篇
  2013年   5篇
  2012年   1篇
  2008年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1990年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
2.
A significant portion of tutorial interactions revolve around the bugs a student makes. When a tutor performs an intervention to help a student fix a programming bug, the problem of deciding how to help the student appears to require extensive planning. In this article, we identify five considerations tutors appear to take into account when they plan tutorial interventions for students’ bugs. Using data collected from human tutors working in the domain of introductory computer programming, we (1) identify the knowledge tutors use when they reason about the five planning considerations, and (2) show that tutors are consistent in the ways that they use the kinds of knowledge to reason about students’ bugs.  相似文献   
3.
Programming is a complex cognitive task for students, because of the difficulty of finding the appropriate elements (the “decomposition” problem) and integrating them correctly into a whole (the “composition” problem). Programming is also hard to learn, because so much of the thinking behind a program is implicit and the process of programming is long and complicated. Our approach is to integrate a computer-aided design tool (CAD) with scaffolding to create a single, cohesive, and coherent workbench for the entire process. Our workbench is called the GPCeditor. We have evaluated its use by high-school students. Our results suggest that students program well in the GPCeditor, they learn good programming practices, and that the learning is occurring through use of the GPCeditor.  相似文献   
4.
5.
Considerable effort has been made over the past decade to address the needs of learners in large urban districts through scaleable reform initiatives. We examine the effects of a multifaceted scaling reform that focuses on supporting standards based science teaching in urban middle schools. The effort was one component of a systemic reform effort in the Detroit Public Schools, and was centered on highly specified and developed project‐based inquiry science units supported by aligned professional development and learning technologies. Two cohorts of 7th and 8th graders that participated in the project units are compared with the remainder of the district population, using results from the high‐stakes state standardized test in science. Both the initial and scaled up cohorts show increases in science content understanding and process skills over their peers, and significantly higher pass rates on the statewide test. The relative gains occur up to a year and a half after participation in the curriculum, and show little attenuation with in the second cohort when scaling occurred and the number of teachers involved increased. The effect of participation in units at different grade levels is independent and cumulative, with higher levels of participation associated with similarly higher achievement scores. Examination of results by gender reveals that the curriculum effort succeeds in reducing the gender gap in achievement experienced by urban African‐American boys. These findings demonstrate that standards‐based, inquiry science curriculum can lead to standardized achievement test gains in historically underserved urban students, when the curriculum is highly specified, developed, and aligned with professional development and administrative support. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 922–939, 2008  相似文献   
6.
Reform efforts in science education emphasize the importance of supporting students' construction of knowledge through inquiry. Project‐based science (PBS) is an ambitious approach to science instruction that addresses concerns of reformers. A sample of 142 10th‐ and 11th‐grade students enrolled in a PBS program completed the 12th‐grade 1996 National Assessment of Educational Progress (NAEP) science test. Compared with subgroups identified by NAEP that most closely matched our student sample, White and middle class, PBS students outscored the national sample on 44% of NAEP test items. This study shows that students participating in a PBS curriculum were prepared for this type of testing. Educators should be encouraged to use inquiry‐based approaches such as PBS to implement reform in their schools. © 2002 Wiley Periodicals, Inc. J Res Sci Teach 39: 410–422, 2002  相似文献   
7.
Many students have difficulty learning symbolic and molecular representations of chemistry. This study investigated how students developed an understanding of chemical representations with the aid of a computer‐based visualizing tool, eChem, that allowed them to build molecular models and view multiple representations simultaneously. Multiple sources of data were collected with the participation of 71 eleventh graders at a small public high school over a 6‐week period. The results of pre‐ and posttests showed that students' understanding of chemical representations improved substantially (p < .001, effect size = 2.68‐. The analysis of video recordings revealed that several features in eChem helped students construct models and translate representations. Students who were highly engaged in discussions while using eChem made referential linkages between visual and conceptual aspects of representations. This in turn may have deepened their understanding of chemical representations and concepts. The findings also suggest that computerized models can serve as a vehicle for students to generate mental images. Finally, students demonstrated their preferences of certain types of representations and did not use all types of three‐dimensional models interchangeably. © 2001 John Wiley & Sons, Inc. J Res Sci Teach 38: 821–842, 2001  相似文献   
8.
9.
Science education standards established by American Association for the Advancement of Science (AAAS) and the National Research Council (NRC) urge less emphasis on memorizing scientific facts and more emphasis on students investigating the everyday world and developing deep understanding from their inquiries. These approaches to instruction challenge teachers and students, particularly urban students who often have additional challenges related to poverty. We report data on student learning spanning 3 years from a science education reform collaboration with the Detroit Public Schools. Data were collected from nearly 8,000 students who participated in inquiry‐based and technology‐infused curriculum units that were collaboratively developed by district personnel and staff from the University of Michigan as part of a larger, district‐wide systemic reform effort in science education. The results show statistically significant increases on curriculum‐based test scores for each year of participation. Moreover, the strength of the effects grew over the years, as evidenced by increasing effect size estimates across the years. The findings indicate that students who historically are low achievers in science can succeed in standards‐based, inquiry science when curriculum is carefully developed and aligned with professional development and district policies. Additional longitudinal research on the development of student understanding over multiple inquiry projects, the progress of teacher enactment over time, and the effect of changes in the policy and administrative environment would further contribute to the intellectual and practical tools necessary to implement meaningful standards‐based systemic reform in science. © 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 1063–1080, 2004  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号