首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   3篇
教育   1篇
科学研究   3篇
  1990年   1篇
  1980年   1篇
  1964年   1篇
  1951年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Gentiana was originally proposed by Tournefort in 1700. Linnaeus adopted this generic name in his “Genera Plantarum” published in 1737. He divided the genus into seven groups on the basis of different shapes of corolla and forms of floral appendages. In his “Species Plantarum” he reorganized them into three artificial ones.  Forty years later, Moench established a new genus, Gentianella under which he described G. tetrandra as the type of his new genus.  In the view of identity of Gentianella tetrandra with Gentiana campestris L., it is evident that Gentianella represents only some plants formerly included in Gentiana at Linnaeus time.  In 1796, Froelich’s monograph on Gentiana appeared.  In his work four sections were represented and one of them was Crossopetalum.  In 1845, Grisebach also published a monograph of  Gentianaceae and recorded fifteen sections of which Amarella and Imaicola are two of his seven proposed ones. In 1888, Huxley studied the floral structure of Gentianaceae  in relation with pollination mechanism and, accordingly, divided the family into two  main groups, one with epipetalous glands, the other with glands at the base of the ovary.  In each group, four types of flowers were found.  He concluded that Gentiana was a  complex genus on account of presence of four different types of flowers in this group,  and suggested that many species of the genus should be separated out to form some smaller  generic categories.  Six years after, Kusnezow in his monograph divided Gentiana into  two subgenera Eugentiana and Gentianella.  In his system, subgenus Eugentiana consists  of ten sections and the Gentianella, seven.  He contributed much to the systematic  treatment of Eugnetiana but little to that of Gentianella.  He maintained the genus  Gentiana in a broad sense.  With increased knowledge of this group in the last thirty years, a number of botanists were able to make a clearer delimitation of true Gentiana  and its allies and treated them in more natural way.  Moench’s genus Gentianella was  rerised.  In 1936, H. Smith separated Megacodon from Gentianella as a genus.  In the  present paper, the writer suggests a generic name Gentianopsis for the section Crossopetalum in the same Genus. This new genus is characterized by (1) its large and somewhat flattened ellipsoidal   flower bud, (2) two dissimilar pairs of calyx lobes which are distichously imbricate in  aestivation, (3) four triangular, ciflated intracalyx membranes at the base of and  alternate with the calyx lobes, (4) distinct gynophore and (5) enlarged stigma. While  in typical Gentianella represented by section Amarella, the flower buds are small and terete, a laciniate corona is usually present, and the calyx-lobes are leafy, lanceolate, imbricate, and not provided with intracalyx membrane.       Besides the morphological characters mentioned above, the anatomical structure of  the floral parts is also a significant generic criterion.  In Gentianopsis, eight vascular  bundles are present in calyx, representing four dorsals and four fused ventrals.  In each  corolla-lobe there are five bundles.  In the body of ovary six bundles are present.  The ovule bearing surface is extensive covering nearly to entire surface of the ovary wall with  the exception of a narrow longitudinal zone along the dorsal bundle.  In Gentianella, calyx bundles are three in each lobe, without fusion of the ventrals.  In each corolla- lobe, the bundles are three instead of five as in Gentianopsis but the lateral ones branch once dichotomously after entering the base of corolla. In the body of ovary only four main bundles are present due to the fusion of smaller ventral ones.  The placentation is confined to the region of the ventral bundles.        Phylogenetically Gentianopsis and Gentianella may be regarded as closely reIated and may represent branches of a common line with Gentianopsis standing at a lower level, Gentianella being more advanced. In Gentianella the number of bundles in the corolla segments and ovary wall are reduced by partial or complete fusion and the distribution of ovules is confined only to the region of the ventral bundles.  However, in the calyx of Gentianopsis there is fusion of ventral bundles, whereas the correspound- ing bundles in the Gentianella remain separate.  The Gentianopsis-Gentianella line on the one hand and the Gentiana line on the other may come again from a common acestral stock.  Gentiana possesses only three bundles in each corolla-lobe.  A variety of plicate between corolla lobes except in case of Gentiana lutea and intracalyx membrane above the throat of calyx-tube are also the common structures in Gentiana.  Thus the pollination mechanism is highly specialized in the genus.  As far as we know, in Gentiana the glandular appendages usually exist at the base of ovary.  If those nectarial processes are correctly interpreted as the representatives of staminodes, gentiana would, undoubtedly, be derived from an ancestral  form with  hypogynous  diplostemonous androecium, and bears no direct relationship to Gentianopsis or Gentianella in which the glands are epipetalous.  It may be reasonable to conclude the Gentiana and Gentianopsis- Gentianella line are two parallel derivatives from a common ancestor which has the floral characters of two series of hypogynous stamens. Gentianopsis and Gentianella may represent branches of a common line with Gentianopsis standing at a lower level, Gentianella being more advanced. Their relations may be diagrammed below:                                                       Gentianopsis                                                                                                                               Gentianella Common ancestor                                                       Gentiana        This new genus consists of fourteen species and two varieties in the world.  Onlyeight species and two varieties are represented in China. They are G. barbara, G. barbatavar. sinensis, G. grandis, G. scabromanginata, G. paludosa, G. nana, G. longistyla,G. lutea, G. contorta, and G. contorta var. Wui.     The species of present genus occur in the alpine regions of North Hemisphere.  InChina t,hey are distributed in Kokonor, Kansu, Shensi, Shansi, Chahar, Hopei, Manchuria,Hupeh, Szechuan, Sikang, Tibet, and Yunnan. G. Yabei (Takeda et Hara) is foundin Japan, G. detonsa (Bott&) in North Europe, G. ciliata (Linn.) in South Europe,G. crinita (Froel.) G. procera (Holm.) and G. degans (A. Nels) in North America.G. barbata is the most widespreading species and reported in Sibiria and China.G. contorta (Royle) is a common plant in Himalayan mountaineous range, China andNorth part of India.     The species and varieties cited in this paper are as follows:           t.  Gentianopsis barbata (Froel.) comb. nov.           la. Gentianopsis barbata (Froel.) var. sinensis, var. nov.          2.  Gentian opsis grandis (H. Sm.) comb. nov.          3.  Gentianopsis scabromarginata (H. Sm.) comb. nov.          4.  Gcntianopsis paludosa (Munro) comb. nov.          5.  Gentianopsis nana sp. nov.          6.  Gentianopsis longistyla, sp. nov.          7.  Gentianopsis lutea, sp. nov.  相似文献   
2.
 四合木属Tetraena Maxim.   是内蒙古自治区西部和亚洲中部荒漠区东部的特有属,也是珍稀   濒危植物。前人曾对该属的系统地位做过一些研究,但观点不一。作者通过对该属的研究历史、雌蕊、   果实、花粉粒、染色体等的综合研究后,建议将该属从TaxTaЛЖЯН系统(1987)蒺藜科的霸王亚科中分   出,成立一个新亚科——四合木亚科。本文还编写了蒺藜科(狭义的)分亚科检索表。  四合木属的系统   地位是:芸香目蒺藜科四合木亚科四合木属。  相似文献   
3.
4.
龙胆属(Gentiana L.)秦艽组(Sect.Aptera Kusnez.)所属的种类大多数是治疗风湿性关节炎常用中药之一,除供国内广泛应用外,还有一定量的出口。此组在我国种类多,产量高,分布广,且有不少特有种。现在市场上商品秦艽和原植物的关系存在着一定的混乱现象,影响医疗效果。秦艽组在我国究竟有多少种,分布情况怎样,都不很清楚,为此作者对秦艽组进行了分类研究。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号