首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
教育   3篇
体育   21篇
综合类   1篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2013年   5篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2004年   2篇
  2001年   1篇
  1997年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
This study aimed to identify the continuous ground reaction force (GRF) features which contribute to higher levels of block phase performance. Twenty-three sprint-trained athletes completed starts from their preferred settings during which GRFs were recorded separately under each block. Continuous features of the magnitude and direction of the resultant GRF signals which explained 90% of the variation between the sprinters were identified. Each sprinter’s coefficient score for these continuous features was then input to a linear regression model to predict block phase performance (normalised external power). Four significant (p < 0.05) predictor features associated with GRF magnitude were identified; there were none associated with GRF direction. A feature associated with greater rear block GRF magnitudes from the onset of the push was the most important predictor (β = 1.185), followed by greater front block GRF magnitudes for the final three-quarters of the push (β = 0.791). Features which included a later rear block exit (β = 0.254) and greater front leg GRF magnitudes during the mid-push phase (β = 0.224) were also significant predictors. Sprint practitioners are encouraged, where possible, to consider the continuous magnitude of the GRFs produced throughout the block phase in addition to selected discrete values.  相似文献   
2.
The purpose of this study was to further understand the biomechanical differences between the standing and crouch starting methods, and to investigate whether one of the starting styles provides better acceleration and proves to be faster. Six university track team sprinters performed 2 x 3 x 50 m trials. Digitised video, photocell timing, and velocity data revealed that during the first steps of the performance the standing start produced higher body centre of mass horizontal velocity than the crouch start. This may be due to the longer distance between the feet in the standing start, which caused longer push-off phases, and the work against gravity in the crouch start. However, this advantage in horizontal velocity disappeared by the 10 m mark, where similar velocities were recorded with both start styles. Further, there was no statistically significant difference between the two starting styles in horizontal velocity at the 25 m mark, nor in the time to reach the 25 m or 50 m mark. Regarding relay running, where athletes need to decide to adopt either a crouch start without starting blocks or a standing start, there seems to be no specific reason for outgoing athletes to use a crouch start, although this area warrants further investigation.  相似文献   
3.
Place kicks in Rugby Union present valuable opportunities to score points outside the spatiotemporal dynamics of open play but are executed under varying performance constraints. We analysed effects of specific task constraints and relevant contextual factors on place kick performance in the 2015 Rugby Union World Cup. Data were collected from television broadcasts for each place kick. In addition to kick outcomes, contextual factors, including time of the kick in the match, score margin at the time of the kick, and outcome of the kicker’s previous kick, were recorded. Effects of spatial task constraints were analysed for each kick, using distance (m) and angle (°) of the kick to the goalposts. A binomial logistic regression model revealed that distance from, and angle to, the goalposts were significant predictors of place kick outcome. Furthermore, the success percentage of kickers who missed their previous kick was 7% lower than those who scored their previous kick. Place kick success percentage in the 10 minutes before half-time was 8% lower than the mean tournament success percentage, which was 75% (95% CI 71–78%). The highest kick success percentage was recorded when scores were level (83%; 95% CI 72–91%). Our data highlighted how subtle changes in task constraints and contextual factors can influence performance outcomes in elite performers in international competition. Fluctuations in place kick success suggested that individual constraints, such as thoughts, emotions and fatigue, induced during competition, could interact with perceptions to influence emergent performance behaviours.  相似文献   
4.
Abstract

This study analysed the first stance phase joint kinetics of three elite sprinters to improve the understanding of technique and investigate how individual differences in technique could influence the resulting levels of performance. Force (1000 Hz) and video (200 Hz) data were collected and resultant moments, power and work at the stance leg metatarsal-phalangeal (MTP), ankle, knee and hip joints were calculated. The MTP and ankle joints both exhibited resultant plantarflexor moments throughout stance. Whilst the ankle joint generated up to four times more energy than it absorbed, the MTP joint was primarily an energy absorber. Knee extensor resultant moments and power were produced throughout the majority of stance, and the best-performing sprinter generated double and four times the amount of knee joint energy compared to the other two sprinters. The hip joint extended throughout stance. Positive hip extensor energy was generated during early stance before energy was absorbed at the hip as the resultant moment became flexor-dominant towards toe-off. The generation of energy at the ankle appears to be of greater importance than in later phases of a sprint, whilst knee joint energy generation may be vital for early acceleration and is potentially facilitated by favourable kinematics at touchdown.  相似文献   
5.
Abstract

The aim of this study was to investigate spatiotemporal and kinematic changes between the initial acceleration, transition and maximum velocity phases of a sprint. Sagittal plane kinematics from five experienced sprinters performing 50-m maximal sprints were collected using six HD-video cameras. Following manual digitising, spatiotemporal and kinematic variables at touchdown and toe-off were calculated. The start and end of the transition phase were identified using the step-to-step changes in centre of mass height and segment angles. Mean step-to-step changes of spatiotemporal and kinematic variables during each phase were calculated. Firstly, the study showed that if sufficient trials are available, step-to-step changes in shank and trunk angles might provide an appropriate measure to detect sprint phases in applied settings. However, given that changes in centre of mass height represent a more holistic measure, this was used to sub-divide the sprints into separate phases. Secondly, during the initial acceleration phase large step-to-step changes in touchdown kinematics were observed compared to the transition phase. At toe-off, step-to-step kinematic changes were consistent across the initial acceleration and transition phases before plateauing during the maximal velocity phase. These results provide coaches and practitioners with valuable insights into key differences between phases in maximal sprinting.  相似文献   
6.
Sprint push-off technique is fundamental to sprint performance and joint stiffness has been identified as a performance-related variable during dynamic movements. However, joint stiffness for the push-off and its relationship with performance (times and velocities) has not been reported. The aim of this study was to quantify and explain lower limb net joint moments and mechanical powers, and ankle stiffness during the first stance phase of the push-off. One elite sprinter performed 10 maximal sprint starts. An automatic motion analysis system (CODA, 200 Hz) with synchronized force plates (Kistler, 1000 Hz) collected kinematic profiles at the hip, knee, and ankle and ground reaction forces, providing input for inverse dynamics analyses. The lower-limb joints predominately extended and revealed a proximal-to-distal sequential pattern of maximal extensor angular velocity and positive power production. Pearson correlations revealed relationships (P < 0.05) between ankle stiffness (5.93 ± 0.75 N x m x deg(-1)) and selected performance variables. Relationships between negative power phase ankle stiffness and horizontal (r = -0.79) and vertical (r = 0.74) centre of mass velocities were opposite in direction to the positive power phase ankle stiffness (horizontal: r = 0.85; vertical: r = -0.54). Thus ankle stiffness may affect the goals of the sprint push-off in different ways, depending on the phase of stance considered.  相似文献   
7.
The appropriate determination of performance outcome is critical when appraising a performer’s technique. Previous studies of rugby place kicking technique have typically assessed performance based on ball velocity, but this is not the sole requirement. Therefore, a mathematical model of rugby place kick ball flight was developed to yield a single measure more representative of true performance. The model, which requires only initial ball flight kinematics, was calibrated and validated using empirical place kick data, and found to predict ball position with a mean error of 4.0% after 22 m of ball flight. The model was then applied to the performances of 33 place kickers. The predicted maximum distance, a single performance measure which accounted for initial ball velocity magnitude and direction, and spin, was determined using the model and was compared against ball velocity magnitude. A moderate association in the rank-order of the kicks between these two measures (ρ = 0.52) revealed that the relative success of the kicks would be assessed differently with each measure. The developed model provides a representative measure of place kick performance that is understandable for coaches, and can be used to predict changes in performance outcome under different ball launch or environmental conditions.  相似文献   
8.
Part-time vocational engineering curricula provide a response to a number of present-day demands related to economic developments. Their aim is to transform experienced higher technicians into engineering managers through a combination of knowledge derived from past experience in working positions and in new situations, with courses and activities in an academic institution. Synergy between the two streams can be achieved by specific means such as dual tutoring by the academic institution and the company, training in the capacity of synthesis regarding technological developments in progress, observation and analysis by the learner of his/her own work station, field research on team management and the writing of a final professional dissertation in the company.  相似文献   
9.
在分析当前高职商务英语专业课程教学现状的基础上,提出了相关课程教学改革的思路与具体目标措施,以及期望达到的专业培养目标。  相似文献   
10.
The initial steps of a sprint are important in team sports, such as rugby, where there is an inherent requirement to maximally accelerate over short distances. Current understanding of sprint acceleration technique is primarily based on data from track and field sprinters, although whether this information is transferable to athletes such as rugby players is unclear, due to differing ecological constraints. Sagittal plane video data were collected (240?Hz) and manually digitised to calculate the kinematics of professional rugby forwards (n?=?15) and backs (n?=?15), and sprinters (n?=?18; 100?m personal best range?=?9.96–11.33?s) during the first three steps of three maximal sprint accelerations. Using a between-group research design, differences between groups were determined using magnitude-based inferences, and within-group relationships between technique variables and initial sprint acceleration performance were established using correlation. Substantial between-group differences were observed in multiple variables. Only one variable, toe-off distance, differed between groups (d?=??0.42 to ?2.62) and also demonstrated meaningful relationships with sprint performance within all three groups (r?=??0.44 to ?0.58), whereby a stance foot position more posterior relative to the centre of mass at toe-off was associated with better sprint performance. While toe-off distance appears to be an important technical feature for sprint acceleration performance in both sprinters and rugby players, caution should be applied to the direct transfer of other kinematic information from sprinters to inform the technical development of acceleration in team sports athletes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号