首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
教育   21篇
  2021年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
2.
The authors explored whether manipulating feedback influenced cognition, motivation, and achievement in an undergraduate chemistry course. They measured students’ (N = 250) achievement goals, test anxiety, self-efficacy, and metacognitive strategy use at the beginning and end of the semester. After completing the first set of questionnaires, students were randomly assigned to 1 of 4 conditions: (a) control, (b) mastery feedback, (c) performance-approach feedback, and (d) combined mastery/performance-approach feedback. In each condition, students received a raw performance score for each weekly quiz they completed online and, for the treatment conditions, additional feedback reflective of that specific feedback condition. Results provide evidence for the multiple goals perspective (specialized pattern) wherein performance-oriented feedback was beneficial for some outcomes, whereas mastery feedback was beneficial for other outcomes.  相似文献   
3.
4.
Educational stakeholders across the globe are demanding science education reform that attends simultaneously to culturally diverse students’ needs and promotes academic excellence. Although professional development programs can foster science teachers’ growth as culturally responsive educators, effective supports to this end are not well identified. This study examined associations between specific Science Teachers are Responsive to Students (STARTS) program activities and United States high school life science teachers’ understanding and enactment of culturally responsive science teaching. Findings suggest: (a) critically examining their practices while learning of students’ needs and experiences enabled teachers to identify responsive instructional strategies and relevant science topics for culturally responsive teaching; (b) evaluating culturally responsive exemplars while identifying classroom-based needs allowed teachers to identify contextually appropriate instruction, thereby yielding a robust understanding of the purpose and feasibility of culturally responsive science teaching; and (c) by justifying the use of responsive and reform-based instructional strategies for their classrooms, teachers made purposeful connections between students’ experiences and science instruction. We propose a set of empirically based design conjectures and theoretical conjectures to generate adaptable knowledge about preparing culturally responsive science teachers through professional development.  相似文献   
5.
Using a case study method, the experiences of a group of high school science teachers participating in a unique professional development method involving an argue-to-learn intervention were examined. The participants (N?=?42) represented 25 different high schools from a large urban school district in the southwestern United States. Data sources included a multiple-choice science content test and artifacts from a capstone argument project. Findings indicate although it was intended for the curriculum to be a robust and sufficient collection of evidence, participant groups were more likely to use the Web to find unique evidence than to they were to use the provided materials. Content knowledge increased, but an issue with teacher conceptions of primary data was identified, as none of the participants chose to use any of their experimental results in their final arguments. The results of this study reinforce multiple calls for science curricula that engage students (including teachers as students) in the manipulation and questioning of authentic data as a means to better understanding complex socioscientific issues and the nature of science.  相似文献   
6.
7.
The purpose of this article is to review recent research on self-regulated learning and discuss the implications of this research for science education. We draw on examples of self-regulated learning from the science education literature to summarise and illustrate effective instructional methods and the development of metacognitive understanding (Gunstone; 1999a; Rickey & Stacy, 2000; White & Mitchell, 1994). We also focus on the crucial role that metacognition plays in self-regulation (Baird & White, 1996; Nichols, Tippins, & Wieseman, 1997; White, 1998). We divide our discussion into two main parts. The first focuses on three components of self-regulated learning, including cognition, metacognition, and motivation. We relate these aspects of self-regulation to current practices in science education. The second section focuses on six general instructional strategies for improving self-regulation in the science classroom. We focus on the use of inquiry based learning, the role of collaborative support, strategy and problem solving instruction, the construction of mental models, the use of technology to support learning, and the role of personal beliefs such as self-efficacy and epistemological world views. These instructional strategies are selected because they reflect extensive research agendas over the last decade within the science education literature and are essential to metacognition and self-regulation (Butler & Winne, 1995; Gunstone, 1999b).  相似文献   
8.
This paper describes a unique collaboration between the College of Education (COE) and the Center for Academic Enrichment and Outreach (CAEO) at the University of Nevada Las Vegas. Here we describe our efforts to improve student science performance in traditionally underachieving urban middle schools by embracing our state's highly qualified teacher requirements implemented to gain compliance with the No Child Left Behind Act of 2001 (NCLB). The focus of our collaborative intervention is improving the content and pedagogical content knowledge of a group of existing teachers by fostering a professional learning community among teachers, scaffolding technology within a new master's degree program, and working to build a partnership to provide the necessary technology infrastructure. This paper outlines our intervention from both a practical and theoretical perspective.  相似文献   
9.
10.
This study evaluated Gregoire’s (2003) Cognitive–Affective Conceptual Change model (CAMCC) for predicting and assessing conceptual change in science teachers engaged in a long-term professional development project set in a large school district in the southwestern United States. A multiple case study method with data from three teacher participants was used to understand the process of integrating and applying a reform message of inquiry based science teaching. Data sources included: responses to example teaching scenarios, reflective essays, lesson plans, classroom observations, and action research projects. Findings show that the CAMCC functioned well in predicting how these teachers made decisions that impacted how they processed the reform message. When the reform message was communicated in such a way as to initiate stress appraisal, conceptual change occurred, producing changes in classroom practice. If the reform message did not initiate stress appraisal, teachers rejected the professional development message and developed heuristic responses. In order to further research and improve practice, propositions for assessments related to the CAMCC are provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号