首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
教育   2篇
  2013年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Hydrogen is starting to be mentioned as an alternative fuel to replace the fossil fuel in future transportation applica- tions due to its characteristics of zero greenhouse gas emission and high energy efficiency. Before hydrogen fuel and its facilities can be introduced to the public, relevant safety issues and its hazards must be assessed in order to avoid any chance of injury or loss. While a traditional risk assessment has difficulty in prioritizing the risk of failure modes, this paper proposes a new fuzzy-based risk evaluation technique which uses fuzzy value to prioritize the risk of various scenarios. In this study, the final risk of each failure modes was prioritized by using the MATLAB fuzzy logic tool box with a combination of two assessments. The first assessment was concerned with the criteria which affected the actual probability of occurrence. This assessment considered the availability of the standard that was applied to prevent the likelihood of the scenario occurring. On the other hand, the second assessment was focused on evaluating the consequence of the failure by taking into account the availability of detection and the complexity of the failure rather than only the severity of the scenarios. A total of 87 failure scenarios were identified using failure modes and effect analysis (FMEA) procedures on hydrogen refueling station models. Fuzzy-based assessments were performed through risk prioritizing various failure scenarios with a fuzzy value (0 to 1) and risk level (low, medium, and high) while a tra- ditional risk assessment approach presented the risks only in forms of level (low, medium, and/or high). Availability of the fuzzy value enabled further prioritizing on the risk results that fell in the same level of risk. This study concluded that fuzzy-based risk evaluation is able to further prioritize the decisions when compared with a traditional risk assessment method.  相似文献   
2.
Solar energy is a natural resource which can be harnessed to provide clean electricity for hydrogen production systems. However, this technology is not widely used because of control issues, particularly for hydrogen refuelling stations. At present, direct or DC-DC converter couplings are the most common system configurations for hydrogen refuelling stations. However, these system configurations are costly and suffer from gas shortage at hydrogen refuelling stations. Furthermore, the hydrogen produced by such system configurations varies considerably depending on the levels of solar radiation. In order to address these issues, a new system configuration is proposed, incorporating the feedback signal of the storage level in the control system. The photo- voltaic (PV) system, electrolyzer, and storage tank are integrated with a fuzzy logic controller (FLC) to determine the backup current compensation for electrolyzer operation in order to obtain the minimum power required for hydrogen production. The proposed FLC is constructed with three input variables which are the PV current, hydrogen storage level, and the battery state of charge. The rules-based fuzzy inference process is based on the proposed configuration which combines the advantages of direct and DC-DC converter coupling configurations. The simulation results show that the proposed configuration offers better adapta- bility to variable radiation conditions compared to other methods. This gives a more promising option for ensuring the adequacy of hydrogen supply at hydrogen refuelling stations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号