首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
教育   9篇
科学研究   2篇
信息传播   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2013年   5篇
  1976年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
2.
3.
In this article, I make a case for the potential educative worth of distractions for learning science in the school laboratory. Distractions are operationalized as experiences lying outside the main purpose of the laboratory activity, thereby diverting students’ attention from that purpose. Through a practical epistemology analysis, I examined in close detail the conversations of three groups of high school students trying to explain how a real galvanic cell works. The three groups experienced the same two distractions, (1) a nonworking light-emitting diode and (2) negative readings on a voltmeter. The analysis reveals how one of the groups, through a series of contingencies, successively made the two distractions continuous with the main purpose of the activity. In the remaining two groups, no such continuity was established. The results show that (a) experiences initially being distracting, perplexing, and confusing may indeed acquire significance for the students’ possibilities of coping with the main purpose of the activity but that (b) the outcome is highly contingent on the particular experiences drawn upon by the students to cope with the distractions. Consequently, I discuss ways in which teachers may turn distractions encountered in laboratory activities into educative experiences for more than a few lucky students.  相似文献   
4.
It is commonly argued that socio-economic inequalities can explain many of the differences in achievement and participation in science education that have been reported among countries and among schools within a country. We addressed this issue by examining (a) the relationship between variables associated with socio-economic background and application frequencies to the Swedish Natural Science Programme (NSP) in upper secondary school and (b) whether there are lower secondary schools in Sweden that seem to compensate for these variables. Data from Statistics Sweden (SCB) covering the whole population of 106,483 ninth-grade students were used to calculate the probability for each student to apply to the NSP. Our results indicate that the variables, such as parental educational level and grades, have explanatory power, but with varying effect for different subpopulations of students. For example, grades in mathematics have a greater impact than grades in science for females' choice of the NSP. The opposite holds for male students. Out of 1,342 schools, 158 deviated significantly from predicted, that is, the students in these schools applied to the NSP in greater or lesser extent than expected. The number of deviating schools is greater than predicted by pure random variation. This suggests that variables of socio-economic background are only a partial explanation of the application frequencies, and that the deviation needs to be investigated further. Our findings suggest that in order to understand why schools deviate positively and so compensate for the socio-economic background of their students, we need to study their practices more closely.  相似文献   
5.
ABSTRACT

This study explores first-year university students’ reasoning as they learn to draw Lewis structures. We also present a theoretical account of the formal procedure commonly taught for drawing these structures. Students’ discussions during problem-solving activities were video recorded and detailed analyses of the discussions were made through the use of practical epistemology analysis (PEA). Our results show that the formal procedure was central for drawing Lewis structures, but its use varied depending on situational aspects. Commonly, the use of individual steps of the formal procedure was contingent on experiences of chemical structures, and other information such as the characteristics of the problem given. The analysis revealed a number of patterns in how students constructed, checked and modified the structure in relation to the formal procedure and the situational aspects. We suggest that explicitly teaching the formal procedure as a process of constructing, checking and modifying might be helpful for students learning to draw Lewis structures. By doing so, the students may learn to check the accuracy of the generated structure not only in relation to the octet rule and formal charge, but also to other experiences that are not explicitly included in the formal procedure.  相似文献   
6.
The purpose of this study is to use a comparative approach to scrutinize the common assumption that certain school science activities are theoretical and therefore particularly suited for engaging students with scientific ideas, whereas others are practical and, thus, not equally conducive to engagement with scientific ideas. We compared two school science activities, one (laboratory work) that is commonly regarded as focusing attention on artefacts that may distract students from central science concepts and the other (concept mapping) that is thought to make students focus directly on these concepts. We observed students in either a laboratory activity about real galvanic cells or a concept-mapping activity about idealized galvanic cells. We used a practical epistemology analysis to compare the two activities regarding students' actions towards scientific ideas and artefacts. The comparison revealed that the two activities, despite their alleged differences along the theory–practice scale, primarily resulted in similar student actions. For instance, in both activities, students interacted extensively with artefacts and, to a lesser extent, with scientific ideas. However, only occasionally did students establish any explicit continuity between artefacts and scientific ideas. The findings indicate that some of the problems commonly considered to be unique for school science practical work may indeed be a feature of school science activities more generally.  相似文献   
7.
This paper deals with observer-based control design for a class of switched discrete-time linear systems with parameter uncertainties. The main contribution of the paper is to propose a convenient way based on Finsler’s lemma to enhance the synthesis conditions, expressed in terms of Linear Matrix Inequalities (LMIs). Indeed, this judicious use of Finsler’s lemma provides additional decision variables, which render the LMIs less conservative and more general than all those existing in the literature for the same class of systems. Two numerical examples followed by a Monte Carlo evaluation are proposed to show the superiority of the proposed design technique.  相似文献   
8.
ABSTRACT

In this study, we explore the issues and challenges involved in supporting students’ learning to discern relevant and critical aspects of determining oxidation states of atoms in complex molecules. We present a detailed case of an interaction between three students and a tutor during a problem-solving class, using the analytical tool of practical epistemology analysis (PEA). The results show that the ability to make relevant distinctions between the different parts of a molecule for solving the problem, even with the guidance of the tutor, seemed to be challenging for students. These shifts were connected to both purposes that were specific for solving the problem at hand, and additional purposes for general learning of the subject matter, in this case how to assign oxidation states in molecules. The students sometimes could not follow the additional purposes introduced by the tutor, which made the related distinctions more confusing. Our results indicate that in order to provide adequate support and guidance for students the tutor needs to consider how to sequence, move between, and productively connect the different purposes introduced in a tutor-student interaction. One way of doing that is by first pursuing the purposes for solving the problem and then successively introduce additional, more general purposes for developing students’ learning of the subject matter studied. Further recommendations drawn from this study are discussed as well.  相似文献   
9.
In recent years, the deployment of Cloud Computing (CC) has become more popular both in research and industry applications, arising form various fields including e-health, manufacturing, logistics and social networking. This is due to the easiness of service deployment and data management, and the unlimited provision of virtual resources (VR). In simple scenarios, users/applications send computational or storage tasks to be executed in the cloud, by manually assigning those tasks to the available computational resources. In complex scenarios, such as a smart city applications, where there is a large number of tasks, VRs, or both, task scheduling is exposed as an NP-Hard problem. Consequently, it is preferred and more efficient in terms of time and effort, to use a task scheduling automation technique. As there are many automated scheduling solutions proposed, new possibilities arise with the advent of Fog Computing (FC) and Blockchain (BC) technologies. Accordingly, such automation techniques may help the quick, secure and efficient assignment of tasks to the available VRs. In this paper, we propose an Ant Colony Optimization (ACO) algorithm in a Fog-enabled Blockchain-assisted scheduling model, namely PF-BTS. The protocol and algorithms of PF-BTS exploit BC miners for generating efficient assignment of tasks to be performed in the cloud’s VRs using ACO, and award miner nodes for their contribution in generating the best schedule. In our proposal, PF-BTS further allows the fog to process, manage, and perform the tasks to enhance latency measures. While this processing and managing is taking place, the fog is enforced to respect the privacy of system components, and assure that data, location, identity, and usage information are not exposed. We evaluate and compare PF-BTS performance, with a recently proposed Blockchain-based task scheduling protocol, in a simulated environment. Our evaluation and experiments show high privacy awareness of PF-BTS, along with noticeable enhancement in execution time and network load.  相似文献   
10.
The present paper takes its point of departure in risk being a relevant content for science education, and that there are many different approaches to how to incorporate it. By reviewing the academic literature on the use and definitions of risk from fields such as engineering, linguistics and philosophy, we identified key elements of the risk concept relevant for science education. Risk is a phenomenon of the future that may be conveyed by our activity, it is something that may or may not take place. Hence, at the core of risk we find uncertainty and consequence. Furthermore, the elements of probability and severity are relevant modifiers of the consequence, as well as both subject to uncertainty. Additionally, in framing, understanding and decision-making on risk, as individuals or society, we need to acknowledge that risk has both objective and subjective components, lying in the interface between knowledge and values. In this paper, we describe how these key elements were derived from the literature and derive a schematic model of the risk concept for the purpose of science education. We further discuss how this model may assist in planning, execution and evaluation of teaching activities explicitly or implicitly involving risk issues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号