首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
教育   7篇
综合类   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Reflectance Infrared Fourier Transform) and transmission Infrared (IR) spectroscopy. The results show that the surface exists not only carbon-hydrogen groups, but also carboxyl, ketene or quinone (carbonyl) oxygen-containing groups. These functional groups were formed in the process of the material growth, which result in large amount of chemical defect sites on the walls.  相似文献   
2.
以钛酸四丁酯为前驱体,冰醋酸水解抑制剂,用溶胶-凝胶法制备了纳米TiO2/CNTs复合催化剂。测定了该材料对亚甲基蓝溶液光降解活性。结果表明,复合TiO2/CNTs催化剂有较高的光催化活性。  相似文献   
3.
The integration of nanomaterials such as carbon nanotubes (CNTs) into microsystems is highly desirable, in order to make use of the unique nanomaterial properties in real devices. However, the CNTtomicrosystem integration is challenging to implement in a manufacturable, cost effective industrial process. This paper presents our work towards a process for making complete, integrated CMOS / MEMS systems with integrated CNT. We demonstrate the feasibility of the process, using roomtemperature process ing, lowcost equipment and consumables, and electrical control with automation possibilities. CNTs are directly integrated at the desired positions in the Si microsystem, forming closed Si / CNT / Si circuits. We explore different designs with the aim to obtain uniform and welldefined CNT synthesis conditions, and show that simplified designs can perform comparably to more complex ones. The Si / CNT / Si circuits obtained can show rectifying (Schottky like) or nearohmic behavior. Gas sensing possibilities are demonstrated, indicating the possibility of monitoring aging/ fermenting of food. Functionalization of CNTs is demon strated, using thermal evaporation of Sn and Pd, opening for selective and sensitive sensors for various gases and ana lytes. Detailed microscopic characterization of the obtained CNTs are presented.  相似文献   
4.
bk羟基磷灰石(Hydroxyapatite,HA)与碳纳米管(carbonnanotubes,CNTs)的热膨胀失配分析入手,分析了HA/CNTs陶瓷材料中碳管的极限含量,计算出碳管的极限含量为31.5vol%。通过实验研究了碳管含量对HA/CNTs陶瓷材料性能的影响。结果表明:当碳管含量为15v01%时,HA/CNTs陶瓷材料获得最佳的增韧效果;当碳管含量超过最佳值时,碳管在材料内部的团聚现象加重,引起材料的相对密度降低,气孔率增大,并导致材料的强度降低。  相似文献   
5.
采用原位合成法以碳纳米管(cNTs)为载体制备了Cu2O/CNTs复合催化剂。初步考察了复合催化剂对X-3B溶液的光催化降解性能,并对光催化降解动力学进行了研究。  相似文献   
6.
研究目的:探究四环素在不同官能团化碳纳米管上的吸附机制,并揭示Cu(II)和Ni(II)对四环素与碳纳米管间作用的影响机制。创新要点:1.碳纳米管对四环素的吸附与其表面官能团种类密切相关;2.金属离子对碳纳米管吸附四环素的影响能力与金属离子络合性能相关。研究方法:采用批量吸附试验和谱学手段表征相结合的研究方法。重要结论:四环素在不同官能化碳纳米管上吸附能力的强弱顺序为:石墨化碳纳米管(G-MWCNTs)〉羟基化碳纳米管(OH-MWCNTs)〉羧基化碳纳米管(COOH-MWCNTs)〉氨基化碳纳米管(NH2-MWCNTs),碳纳米管表面的官能团类型和数量对四环素与碳纳米管间的作用机制有重要影响(表1和图2)。Cu(II)和Ni(II)对四环素在G-MWCNTs 上的吸附几乎没有影响,但对在其它三种官能团化的碳纳米管上的吸附表现出不同的影响能力(图3)。与Ni(II)相比,Cu(II)与碳纳米管上官能团具有更强的络合能力,因此Cu(II)对四环素在不同碳纳米管上吸附的影响要比Ni(II)更显著。  相似文献   
7.
Encapsulation of different guestspecies such as molecules and ions inside carbon nanotubes (CNTs) has been reported in the literatures during the last 15 years and repre sents an exciting development of nanoengineering of novel materials and composites. The reported nanocomposite mate rials show the semiconducting properties with potential applications in nanosensors, nanounits and nanocircuits as well as advanced energy transfer and storage properties, and encompass manufacturing for novel nanowires, nanoelectronic devices with properties designed with optoelectronic, spin tronic and nanomagnetic qualities. This review reports on a wide range of encapsulation references with particular focus on single molecules, atomic chains, metal halides and polymers encapsulated inside CNTs. The encapsulation methods and the chemical and physical qualities of these novel materials are crucial for the future manufacturing of novel innovations in nanotechnology, and represent therefore the current stateof theart of encapsulation methods in advanced manufacturing.  相似文献   
8.
β-TCP ceramic scaffolds were fabricated with selective laser sintering(SLS)in this work. Carbon nanotubes(CNTs)were mixed with porous β-TCP matrix to enhance the mechanical performance of the bone tissue engineering scaffolds. Scaffold reconstruction and microstructure analysis were fulfilled based on micro-computed tomography(Micro-CT)scanning data.Results show that the strength of scaffold mixed with 0.2% CNTs reaches 0.819 MPa which has been improved by 85.7% compared with that without CNTs. Micro-CT analysis shows that the scaffold has a good interconnectivity, and pore size mainly distributes in the two regions of 60-340 μm and 500 620 μm.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号