首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
教育   2篇
科学研究   3篇
  2014年   3篇
  2008年   1篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 537 毫秒
1
1.
本文介绍了超磁致伸缩材料的产生历史、年份、应用前景和基本原理,并对其产业链的现状进行了分析,同时根据江西省的调研数据得出了超磁致伸缩材料产业链的现状,并对其进行了数据分析与总结,最后建议我省应及早构建"稀土元素铽和镝分离—稀土超磁致伸缩材料制备—精密驱动器"完整产业链。  相似文献   
2.
Giant magnetostrictive actuators (GMAs) often work in a close-loop feedback system. This system needs independent sensors which may be difficult to be fixed, besides, excessive sensors may cause more unpredicted problems in a large system. This paper aims to develop a self-sensing GMA. An observer based on piezomagnetic equations is constructed to estimate the stress and strain of the magnetostrictive material. The observer based self-sensing approach depends on the facts that the magnetic field is controllable and that the magnetic induction is measurable. Aiming at the nonlinear hysteresis in magnetization, a hysteresis compensation observer based on Preisach model is developed. Experiment verified the availability of the observer approach, and the hysteresis compensation observer has higher tracking precision than linear observer for dynamic force sensing.  相似文献   
3.
This paper presents two numerical realization of Preisach model by Density Function Method (DFM) and F Function Method (FFM) for a giant magnetostrictive actuator (GMA). Experiment and simulation showed that FFM is better than DFM for predicting precision of hysteresis loops. Lagrange bilinear interpolation algorithm is used in Preisach numerical realization to enhance prediction performance. A set of hysteresis loops and higher order reversal curves are predicted and experimentally verified. The good agreement between the measured and predicted curves shows that the classical Preisach model is effective for modelling the quasi-static hysteresis of the GMA.  相似文献   
4.
本文介绍了一种新型回摆装置,采用了磁致伸缩驱动器作为能量转换装置,利用曲柄滑块机构作为运动转换装置,将直线运动转化为圆周运动,并对其原理进行了可行性分析,进行了结构建模。相比传统的回摆装置,其体型小,可直接控制电流的变化对其进行调速,且反应速度快。  相似文献   
5.
本文针对现有的节流阀调节精度不高,不能做调节使用等问题,通过利用超磁致伸缩材料(GMM)制作的精密节流阀来解决,并提出了一种基于超磁致伸缩材料(GMM)的节流阀的创新设计。该设计利用超磁致伸缩驱动器(GMA)作为动力部分,阀芯作为执行元件,通过控制出油口与阀芯之间的间隙来控制流量,间隙则是通过控制时间来精密的控制间隙的大小,这样就实现了精密节流阀的控制。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号