首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
教育   2篇
  2006年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
In order to define the loading on protective doors of an underground tunnel, the exact knowledge of the blast propagation through tunnels is needed. Thirty-three scale high-explosive tests are conducted to obtain in-tunnel blast pressure for detonations external, internal and at the tunnel entrance. The cross section of the concrete model tunnel is 0.67 m^2. Explosive charges of TNT, ranging in mass from 400 g to 4 600 g, are detonated at various positions along the central axis of the model tunnel. Blast gages are flush-installed in the interior surface of the tunnel to record side-on blast pressure as it propagates down the tunnel. The engineering empirical formulas for predicting blast peak pressure are evaluated, and are found to be reasonably accurate for in-tunnel pressure prediction.  相似文献   
2.
In order to define the loading on protective doors of an underground tunnel, the exact knowledge of the blast propagation through tunnels is needed. Thirty-three scale high-explosive tests are conducted to obtain in-tunnel blast pressure for detonations external, internal and at the tunnel entrance. The cross section of the concrete model tunnel is 0.67 m2. Explosive charges of TNT, ranging in mass from 400 g to 4 600 g, are detonated at various positions along the central axis of the model tunnel. Blast gages are flush-installed in the interior surface of the tunnel to record side-on blast pressure as it propagates down the tunnel. The engineering empirical formulas for predicting blast peak pressure are evaluated, and are found to be reasonably accurate for in-tunnel pressure prediction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号