首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
教育   2篇
  2024年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
This longitudinal study examines the relationship between students' knowledge-in-use performance and their performance on third-party designed summative tests within a coherent and equitable learning environment. Focusing on third-grade students across three consecutive project-based learning (PBL) units aligned with the Next Generation Science Standards (NGSS), the study includes 1067 participants from 23 schools in a Great Lakes state. Two-level hierarchical linear modeling estimates the effects of post-unit assessments on end-of-year summative tests. Results indicate that post-unit assessment performances predict NGSS-aligned summative test performance. Students experiencing more PBL units demonstrate greater gains on the summative test, with predictions not favoring students from diverse backgrounds. This study underscores the importance of coherence, equity, and the PBL approach in promoting knowledge-in-use and science achievement. A systematically coherent PBL environment across multiple units facilitates the development of students' knowledge-in-use, highlighting the significance of designing science and engineering practices (SEPs) and crosscutting concepts coherently and progressively, with intentional revisitation of disciplinary core ideas (DCIs). The study also investigates how the PBL approach fosters equitable learning environments for diverse demographic groups, offering equitable opportunities through equity-oriented design. Contributions include a coherent assessment system that tracks and supports learning aligned with NGSS, emphasizing the predictive power of post-unit assessments, continuous monitoring and tracking. The implications of context similarity and optimal performance expectations within units are discussed. Findings inform educators, administrators, and policymakers about the benefits of NGSS-aligned PBL systems and the need for coherent and equitable learning and assessment systems supporting knowledge-in-use development and equitable opportunities for all learners.  相似文献   
2.
Energy is a central concept in science in every discipline and also an essential player in many of the issues facing people everywhere on the globe. However, studies have shown that by the end of K-12 schooling, most students do not reach the level of understanding required to be able to use energy to make sense of a wide range of phenomena. Many researchers have questioned whether the conceptual foundations of traditional approaches to energy instruction may be responsible for students' difficulties. In response to these concerns, we developed and tested a novel approach to middle school physical science energy instruction that was informed by the recommendations of the Framework for K-12 Science Education (National Research Council, 2012a) and the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013). This new approach differs substantially from more traditional approaches to energy instruction in that it does not require energy forms and it emphasizes connections between energy, systems, and fields that mediate interaction-at-a-distance. We investigated student learning during this novel approach and contrasted it with student learning within a comparable unit based on a more traditional approach to energy instruction. Our findings indicate that students who learned in the new approach outperformed students who learned in the traditional approach in every quantitative and qualitative aspect considered in this study, irrespective of their prior knowledge of energy. They developed more parsimonious knowledge networks in relation to energy that focused primarily around the concept of energy transfer. This study warrants further investigation into the value of this new approach to energy instruction in both middle and high school.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号