首页 | 本学科首页   官方微博 | 高级检索  
     


Unified benchmark for zero-shot Turkish text classification
Abstract:Effective learning schemes such as fine-tuning, zero-shot, and few-shot learning, have been widely used to obtain considerable performance with only a handful of annotated training data. In this paper, we presented a unified benchmark to facilitate the problem of zero-shot text classification in Turkish. For this purpose, we evaluated three methods, namely, Natural Language Inference, Next Sentence Prediction and our proposed model that is based on Masked Language Modeling and pre-trained word embeddings on nine Turkish datasets for three main categories: topic, sentiment, and emotion. We used pre-trained Turkish monolingual and multilingual transformer models which can be listed as BERT, ConvBERT, DistilBERT and mBERT. The results showed that ConvBERT with the NLI method yields the best results with 79% and outperforms previously used multilingual XLM-RoBERTa model by 19.6%. The study contributes to the literature using different and unattempted transformer models for Turkish and showing improvement of zero-shot text classification performance for monolingual models over multilingual models.
Keywords:Text classification  Zero-shot learning  Next sentence prediction  Natural language inference  Masked language modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号