摘 要: | 在函数的性质中 ,周期性占有特殊地位 .本文给出几个在对称条件下函数周期性的一些判定方法及其应用例举 .结论 1 如果一个函数的图象有两条对称轴x=a与x =b,那么这个函数一定是周期函数 .具体地说 ,若函数 y=f(x) ,对于定义域R上的任何x ,都有 f(x) =f( 2a-x) ,f(x) =f( 2b -x) (a≠b) ,则函数 f(x)是周期函数 ,且 2|a-b|为其一个正周期 .证明 对于任一x∈R ,都有f[2 (b-a) +x]=f( 2b-2a +x)=f( 2a-x) =f(x) ,∴y=f(x)是一个周期函数 ,2|a-b|为其一个正周期 .根据结论 1 ,若函数 f(x…
|