首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bifurcation analysis of a microcantilever in AFM system
Authors:Neng-Sheng Pai  David TW Lin
Institution:a Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
b Graduate Institute of Mechatronic System Engineering, National University of Tainan, Tainan 700, Taiwan
Abstract:The atomic force microscope system (AFM) has become a popular and useful instrument to measure the intermolecular forces with atomic resolution that can be applied in electronics, biological analysis, materials, semiconductors, etc. This paper studies the bifurcation phenomenon and complex nonlinear dynamic behavior of the probe tip between the sample and microcantilever of an atomic force microscope using the differential transformation method. The dynamic behavior of the probe tip is characterized with reference to bifurcation diagrams, phase portraits, power spectra, Poincaré maps, and maximum Lyapunov exponent plots produced using the time-series data obtained from differential transformation method. The results indicate that the probe tip behavior is significantly dependent on the magnitude of the vibrational amplitude. Specifically, the probe tip motion changes from T-periodic to 3T-periodic, then from 6T-periodic to multi-periodic, and finally to chaotic motion with windows of periodic motion as the vibrational amplitude is increased from 0 to 5.0. Furthermore, it is demonstrated that the differential transformation method is in good agreement for the considered system.
Keywords:Bifurcation  Microcandilever  AFM  Chaotic motion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号