首页 | 本学科首页   官方微博 | 高级检索  
     

关于一元二次方程整数根的应用策略
作者姓名:黄伟东
作者单位:黑龙江省五常市杜家镇中学 150200
摘    要:一、求根法用分解因式法表示出一元二次方程的两个解,再利用约数的特性及根据题意解决此类问题·例1已知方程a2x2-(4a2-5a)x+3a2-9a+6=0(a为非负整数)至少有一个整数根,那么a=·解:原方程变形,得[ax-(3a-3)][ax-(a-2)]=0,所以ax=3a-3或ax=a-2·因为a为非负整数,所以x1=3aa-3=3-3a,x2=a-a2=1-2a·当x1为整数时a为3的正约数,所以a=1或3;当x2为整数时a为2的正约数,所以a=1或2·所以a=1或2或3·二、判别式法当一元二次方程有整数根时,首先必须确定整系数和判别式必为完全平方数,然后进一步验证·例2设m为自然数,且1
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号