关于介值定理的进一步探讨 |
| |
作者姓名: | 包素华 |
| |
作者单位: | 衡水师专数学系 |
| |
摘 要: | 从所周知,闭区间的连续函数有几个理想的性质,其中介值定理在研究函数方程的根、不动点等问题方面应用非常广泛。下面对介值定理再作进一步的探讨。命题1若函数f(x)在[a,b]连续,且有,则存在ξ∈[a,b]使f(ξ)=ξ证明作辅助函数F(x)=f(x)-x,易知函数F(x)在[a,b]连续,由已知,有f(x)∈[a,b],即a≤f(x)≤b,从而F(a)=f(a)-a,F(b)=f(b)-b≤0当F(a)=0或F(b)=0时,取ξ=a或ξ=b即可当F(a)>0,F(b)<0时,F(a)·F(b)<0,根据零点定理,至少存在一点ζ∈(a,b)使F(ζ)=0,即f(…
|
本文献已被 CNKI 等数据库收录! |
|