首页 | 本学科首页   官方微博 | 高级检索  
     

上期数理化园地解答
摘    要:数学解:设若干个连续奇数为2k+1,2k+3,……2k+(2n-1),(n≥2),其和为S,那么 S=(2k+1)+(2k+3)+……+(2k+2n-1)=1/2[2k+1)+(2k+2n-1)]n=(2k+n)n 即(2k+n)n=1981,而1981的约数只能是1,7,283,1981,于是,当n=7时,(2k+7)×7=1981,k=138。而当n=1,283,1981时,都不合题意。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号