首页 | 本学科首页   官方微博 | 高级检索  
     


Word statistics in Blogs and RSS feeds: Towards empirical universal evidence
Authors:R. Lambiotte   M. Ausloos  M. Thelwall
Affiliation:

aGRAPES, Université de Liège, B5 Sart-Tilman, B-4000 Liège, Belgium

bSCIT, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1SB, UK

Abstract:We focus on the statistics of word occurrences and of the waiting times between such occurrences in Blogs. Due to the heterogeneity of words’ frequencies, the empirical analysis is performed by studying classes of “frequently-equivalent” words, i.e. by grouping words depending on their frequencies. Two limiting cases are considered: the dilute limit, i.e. for those words that are used less than once a day, and the dense limit for frequent words. In both cases, extreme events occur more frequently than expected from the Poisson hypothesis. These deviations from Poisson statistics reveal non-trivial time correlations between events that are associated with bursts of activities. The distribution of waiting times is shown to behave like a stretched exponential and to have the same shape for different sets of words sharing a common frequency, thereby revealing universal features.
Keywords:Time statistics   Information networks   Zipf law   Activity pattern
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号