第46届IMO试题 |
| |
引用本文: | 熊斌. 第46届IMO试题[J]. 中等数学, 2005, 0(8) |
| |
作者姓名: | 熊斌 |
| |
摘 要: | 第一天1.在正△ABC的三边上依下列方式选取6个点:在边BC上选点A1、A2,在边CA上选点B1、B2,在边AB上选点C1、C2,使得凸六边形A1A2B1B2C1C2的边长都相等.证明:直线A1B2、B1C2、C1A2共点.2.设a1,a2,…是一个整数数列,其中既有无穷多项是正整数,又有无穷多项是负整数.如果对每一个正整数n,整数a1,a2,…,an被n除后所得到的n个余数互不相同.证明:每个整数恰好在数列a1,a2,…中出现一次.3.正实数x、y、z满足xyz≥1,证明:x5-x2x5 y2 z2 y5y 5z-2y 2x2 z5=z5x-2z 2y2≥0.第二天4.数列a1,a2,…定义如下:an=2n 3n 6n-1(n=1,2,3,…).求与此数…
|
Problems for the 46th IMO |
| |
Abstract: | |
| |
Keywords: | |
本文献已被 CNKI 万方数据 等数据库收录! |
|