摘 要: | 美国数学家R.A.约翰逊在其名著[1]中,介绍了如下一个优美的三角形命题:定理1设△ABC内接于⊙(O,R),其重心为G,则221(222)OG=R?9AB+BC+CA.本文拟应用向量方法,将这个定理多方位地推广到一般圆内接闭折线中,并举例说明推广命题的若干应用.为此,我们约定:符号A(n)表示任意一条平面闭折线A1A2A3L An A1.定义设闭折线A(n)内接于(O,R),对任意给定的正整数k,若点Q满足11niiOQ OAuuur=k∑=uuuur,①则点Q称为闭折线A(n)关于点O的k号心.按这个定义,容易验证:圆内接闭折线A(n)关于其外心O的1号心、2号心和n号心,就是A(n)的垂心[2]、欧…
|