首页 | 本学科首页   官方微博 | 高级检索  
     

"数形结合"思想在平面向量中的应用
作者姓名:邵刚
作者单位:江苏
摘    要:"数形结合"思想是重要的数学思想方法之一,它在数学的各个分支中都有着广泛的应用.我们知道向量可以按照一定的运算率进行加、减、数乘及数量积运算,很多同学会以为向量是属于代数范畴.但我们知道以上的运算都有它的几何意义,因而向量实际上又是属于几何范畴,故可以说向量是一个数形结合的典范.我们在解题时,若能巧妙地结合向量的几何意义,可以将许多复杂问题简单化,抽象问题直观化.下面通过几例谈谈"数形结合"思想在向量中的几种应用.

关 键 词:平面向量 “数形结合” 几何意义 数学思想方法 积运算 复杂问题 数量积 分支 个数 范畴
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号