摘 要: | 我们把形如y=ax2+bx+cpx2+qx+r(a、b、c、p、q、rR,p、q不全为0)的函数称为“分式”函数.现在介绍求这种函数值域的方法.一、形如y=bx+cqx+r(q≠0)的函数值域的求法将函数解析式变形为y=bq-brq-cqx+r,当c=brq,即bq=cr(分子分母有共同的因式)时,y=bq,函数的值域为狖bq狚;当c≠brq,即bq≠cr时,由于函数y=brq-cqx+r的值域为所有非零实数,所以原函数的值域为y|y≠bq .例如,函数y=4x-22x-1的值域为 ,函数y=3x+42x-1的值域为y|y≠32 .二、形如y=ax2+bx+cpx2+qx+r(p…
|