首页 | 本学科首页   官方微博 | 高级检索  
     

基于领域中文文本的术语抽取方法研究
引用本文:谷俊,王昊. 基于领域中文文本的术语抽取方法研究[J]. 现代图书情报技术, 2011, 0(4)
作者姓名:谷俊  王昊
作者单位:南京大学信息管理系;上海宝山钢铁股份有限公司;
摘    要:在ICTCLAS词典分词的基础上,利用串频最大匹配算法从中文专利文本中抽取候选术语,再利用TF-IDF算法得到相关特征项的权重,经过筛选后得到最终概念术语。最后,抽取部分样本数据进行实验,并对结果进行分析。

关 键 词:本体  概念抽取  串频最大匹配  TF-IDF  中文分词  

Study on Term Extraction on the Basis of Chinese Domain Texts
Gu Jun, Wang Hao. Study on Term Extraction on the Basis of Chinese Domain Texts[J]. New Technology of Library and Information Service, 2011, 0(4)
Authors:Gu Jun   Wang Hao
Affiliation:Gu Jun1,2 Wang Hao11(Department of Information Management,Nanjing University,Nanjing 210093,China)2(Baoshan Iron and Steel Company Ltd.,Shanghai 201900,China)
Abstract:Based on the ICTCLAS dictionary segmentation,this paper proposes a method that extracts relevant concept terminology from the Chinese patent texts by maximum matching and frequency statistics,then computes the weights of the items by TF-IDF and gets the final concept terminology.Finally,it analyzes the results with the sample data extraction experiments.
Keywords:Ontology Concept extraction Maximum matching and frequency statistics TF-IDF Chinese word segmentation  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号