首页 | 本学科首页   官方微博 | 高级检索  
     


Elaborating the structures of a science discipline to improve problem-solving instruction: An account of Classical Genetics' theory structure,function, and development
Authors:Robert Hafner  Sylvia Culp
Affiliation:(1) Department of Science Studies, Western Michigan University, 49008 Kalamazoo, MI, USA;(2) Department of Philosophy, Western Michigan University, 49008 Kalamazoo, MI, USA
Abstract:Situating the conceptual knowledge of a science discipline in the context of its use in the solving of problems allows students the opportunity to develop: a highly structured and functional understanding of the conceptual structure of the discipline; general and discipline-specific problem-solving strategies and heuristics; and insight into the nature of science as an intellectual activity. In order realize these potential learning outcomes, the reconstructions of scientific theories used in problem solving must provide a detailed account of (1) realistic scientific problems and their solutions; (2) problem-solving strategies and patterns of reasoning of disciplinary experts; (3) the various ways that theories function for both disciplinary experts and students; and (4) the way theories, as solutions to realistic scientific problems, develop over time. The purpose of this paper, therefore, is to provide further specificity regarding a philosophical reconstruction of the structure of Classical Genetics Theory that can facilitate problem-solving instruction. We analyze syntactic, semantic and problem-based accounts of theory structure with respect to the above criteria and develop a reconstruction that incorporates elements from the latter two. We then describe how that reconstruction can facilitate realistic problem solving on the part of students.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号