首页 | 本学科首页   官方微博 | 高级检索  
     

非对易空间马鞍势下二维量子谐振子能级差
引用本文:李冬鹏,王明美,余海军. 非对易空间马鞍势下二维量子谐振子能级差[J]. 安徽教育学院学报, 2013, 0(6): 33-36
作者姓名:李冬鹏  王明美  余海军
作者单位:[1]合肥师范学院电子信息工程学院,安徽合肥230061 [2]淮南师范学院物理与电子信息系,安徽淮南232001
基金项目:合肥师范学院自然科学基金项目(NO.2012kj03);安徽高校省级优秀青年人才基金项目(NO.2012SQRL063)
摘    要:我们在非对易空间中,利用不变本征算符(IEO)方法,对非耦合、动量耦合、坐标耦合以及坐标-动量交叉耦合四种情况马鞍势下的二维量子谐振子能谱进行了求解.计算结果表明IEO方法能较好地解决以上问题,并且在动量耦合、坐标耦合两种情况下指出能级差△E与耦合系数之和有关,不区分系数之间相等与否.

关 键 词:不变本征算符  非对易空间  能级差  马鞍势下的二维量子谐振子

Energy level difference in two dimension quantum harmonic oscillators with saddle potential in non-commutative spaces
LI Dong-Peng,WANG Ming-Mei,YU Hai-Jun. Energy level difference in two dimension quantum harmonic oscillators with saddle potential in non-commutative spaces[J]. Journal of Anhui Institute of Education, 2013, 0(6): 33-36
Authors:LI Dong-Peng  WANG Ming-Mei  YU Hai-Jun
Affiliation:2 (1. School of Electronic and Information Engineering, Hefei Normal University, Hefei 230061, China; 2. Department of Physics and Electronic InJbrmation, Huainan Normal Unizrsity, Huainan 232001, China)
Abstract:In noncommutative spaces the mvarlant elgenoperator ergy spectrum Of two dimension quantum harmonic oscillators with saddle potential. Four different cou pling ways in harmonic oscillators with saddle potential have been considered: no coupling, coordinate cou pling, momentum coupling and coordinate momentum coupling. The result shows that IEO method can solve these problems well and gives the relation between energy level gap and coupling coefficient.
Keywords:invariant eigen-operator method  non-commutative spaces  energy level gap  two dimensionquantum harmonic oscillators with saddle potential
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号