Abstract: | A problem central to structural equation modeling is measurement model specification error and its propagation into the structural part of nonrecursive latent variable models. Full-information estimation techniques such as maximum likelihood are consistent when the model is correctly specified and the sample size large enough; however, any misspecification within the model can affect parameter estimates in other parts of the model. The goals of this study included comparing the bias, efficiency, and accuracy of hypothesis tests in nonrecursive latent variable models with indirect and direct feedback loops. We compare the performance of maximum likelihood, two-stage least-squares and Bayesian estimators in nonrecursive latent variable models with indirect and direct feedback loops under various degrees of misspecification in small to moderate sample size conditions. |