仿射观点下的Menelaus定理与Ceva定理 |
| |
作者姓名: | 欧阳立 |
| |
摘 要: | 1.引言 按Felix Klein所给的定义,几何学可以用几何变换群来分类。几何图形,如曲线,曲面等等在一已知几何变换群G下不变性质的研究称为属于群G的几何学。如果G是射影,仿射或欧氏群,我们有相应的射影,仿射或欧氏几何学。 由有限次的平行射影即透视仿射的乘积便构成一个仿射。在仿射平面内所有仿射变换的集合构成群。这个群称为仿射群。在仿射群下几何图形有许多不变的性质和不变量,其中最重要的不变性是同素性和结合性,最重要的不变量是单比。
|
本文献已被 CNKI 等数据库收录! |
|