摘 要: | 设P为正△ABC所在平面上一点 ,PA =a ,PB =b ,PC =c ,以∑表示循环和 ,则△ABC的边长t满足t2 =12 (∑a2 + 6∑b2 c2 - 3∑a4) .类似地 ,我们有定理 设正四面体ABCD棱长为t ,P为空间一点 ,且PA =a ,PB =b ,PC =c ,PD =d ,则t2 =13(∑a2 + 8∑a2 b2 - 8∑a4) .( )证明 :建立坐标系 ,设顶点坐标A(0 ,0 ,0 )、B(t,0 ,0 )、C(t2 ,3t2 ,0 )、D(t2 ,3t6 ,6t3)、P(u ,v ,w) ,如图 ,由距离公式 ,得u2 +v2 +w2 =a2 ,(u -t) 2 +v2 +w2 =b2 ,(u - t2 ) 2 + (v - 3t2 ) 2 +w2 =c2 ,(u - t2 ) 2 + (v - 36 t) 2 + (w - 63t) 2 =d2 ,解得u =a…
|