首页 | 本学科首页   官方微博 | 高级检索  
     

正四面体中的一个等式
作者姓名:邵剑波
作者单位:浙江省宁波甬江职高
摘    要:设P为正△ABC所在平面上一点 ,PA =a ,PB =b ,PC =c ,以∑表示循环和 ,则△ABC的边长t满足t2 =12 (∑a2 + 6∑b2 c2 - 3∑a4) .类似地 ,我们有定理 设正四面体ABCD棱长为t ,P为空间一点 ,且PA =a ,PB =b ,PC =c ,PD =d ,则t2 =13(∑a2 + 8∑a2 b2 - 8∑a4) .( )证明 :建立坐标系 ,设顶点坐标A(0 ,0 ,0 )、B(t,0 ,0 )、C(t2 ,3t2 ,0 )、D(t2 ,3t6 ,6t3)、P(u ,v ,w) ,如图 ,由距离公式 ,得u2 +v2 +w2 =a2 ,(u -t) 2 +v2 +w2 =b2 ,(u - t2 ) 2 + (v - 3t2 ) 2 +w2 =c2 ,(u - t2 ) 2 + (v - 36 t) 2 + (w - 63t) 2 =d2 ,解得u =a…

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号