首页 | 本学科首页   官方微博 | 高级检索  
     

KNN分类算法改进研究进展
引用本文:奉国和,吴敬学. KNN分类算法改进研究进展[J]. 图书情报工作, 2012, 56(21): 97
作者姓名:奉国和  吴敬学
作者单位:华南师范大学经济与管理学院 广州 510006
基金项目:国家社会科学基金项目“自动文本分类技术研究”
摘    要:指出传统KNN(k-nearest neighbor)算法的两大不足:一是计算开销大,分类效率低;二是在进行相似性度量和类别判断时,等同对待各特征项以及近邻样本,影响分类准确程度.针对第一点不足,提出三种改进策略,分别为:基于特征降维的改进、基于训练集的改进和基于近邻搜索方法的改进;针对第二点不足,提出两种改进策略,分别为:基于特征加权的改进和基于类别判断策略的改进.对每种改进策略中的代表方法进行介绍并加以评述.

关 键 词:KNN分类  特征降维  特征加权  训练集优化  快速算法  
收稿时间:2012-06-26
修稿时间:2012-09-02

A Literature Review on the Improvement of KNN Algorithm
Feng Guohe,Wu Jingxue. A Literature Review on the Improvement of KNN Algorithm[J]. Library and Information Service, 2012, 56(21): 97
Authors:Feng Guohe  Wu Jingxue
Affiliation:School of Economic & Management, South China Normal University, Guangzhou 510006
Abstract:The paper points out that the traditional k-nearest neighbor(KNN) algorithm has two shortcomings, one is its high computational complexity, and another is that it gives equal importance to each feature items and neighbor samples during the process of similarity measure and category judgment. According to the first shortcoming, three kinds of improvement strategy are put forward, which are feature reduction, optimization of training set and improvement of neighbor searching method. According to the second shortcoming, two kinds of improvement strategy are put forward, which are feature weighting and sample weighting. Representative method of each strategy is also introduced and commented objectively.
Keywords:KNN categorization  dimension reduction  feature weighting  training set optimizing  fast KNN
本文献已被 万方数据 等数据库收录!
点击此处可从《图书情报工作》浏览原始摘要信息
点击此处可从《图书情报工作》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号