二次曲线的一类最值问题 |
| |
作者姓名: | 朱法臣 |
| |
作者单位: | 山东嘉祥一中 |
| |
摘 要: | 近年来,二次曲线上任一点到两定点的距离的和的最值问题,越来越多,难度越来越大,在各类考试中经常出现.因此,研究一下这类问题,是必要的.定理1P为抛物线y~2=2px上任一点,F为焦点,A(m,n)为该抛物线内部定点,当且仅当AP⊥y轴时,等号成立证明如图1,过点A作AM⊥l于M(l为准线)交抛物线于点P,连接PA、设P’为抛物线上任一点,连当且仅当P’与P重合时,等号成立.例1已知抛物线y~2=4x,点A(2,1),F为其焦点,P为该抛物线上任一点,求的最小值,并求此时面积.解如图2,作AM⊥y轴交抛物线于P,则所求的最小值为3,…
|
本文献已被 CNKI 等数据库收录! |
|