两类不等式的加强证法──数学归纳法的又一证题技巧 |
| |
作者姓名: | 毛继林 |
| |
作者单位: | 江苏省泰兴中学 |
| |
摘 要: | 高三复习中有学生问过下列两个命题的证明:命题1求证:命题2求证:并且认为用数学归纳法证失效了。其实不然,而是学生没有熟练掌握用数学归纳法证明不等式的一种技巧——加强命题.分析对于命题1,可令∴f(n)在n∈N上是增函数,原来f(n+1)>f(n)<,两个不等号方向不一致.设想能不能构造一个函数g(n)>0,使F(n)=f(n)+g(n)是减函数,变换为证朋F(n)<?为了使得数学归纳法有效,这样的g(n)应有什么附加条件呢?首先,欲F(n+1)-F(n)=f(n+1) g(n+1)-[f(n) g(n)]<0,则应有f(n+1)-f(n)<g(n)-g(n…
|
本文献已被 CNKI 等数据库收录! |
|