首页 | 本学科首页   官方微博 | 高级检索  
     


Heteroheptacene-based acceptors with thieno[3,2-b]pyrrole yield high-performance polymer solar cells
Authors:Zhenghui Luo  Ruijie Ma  Jianwei Yu  Heng Liu  Tao Liu  Fan Ni  Jiahao Hu  Yang Zou  Anping Zeng  Chun-Jen Su  U-Ser Jeng  Xinhui Lu  Feng Gao  Chuluo Yang  He Yan
Abstract:Rationally utilizing and developing synthetic units is of particular significance for the design of high-performance non-fullerene small-molecule acceptors (SMAs). Here, a thieno[3,2-b]pyrrole synthetic unit was employed to develop a set of SMAs (ThPy1, ThPy2, ThPy3 and ThPy4) by changing the number or the position of the pyrrole ring in the central core based on a standard SMA of IT-4Cl, compared to which the four thieno[3,2-b]pyrrole-based acceptors exhibit bathochromic absorption and upshifted frontier orbital energy level due to the strong electron-donating ability of pyrrole. As a result, the polymer solar cells (PSCs) of the four thieno[3,2-b]pyrrole-based acceptors yield higher open-circuit voltage and lower energy loss relative to those of the IT-4Cl-based device. What is more, the ThPy3-based device achieves a power conversion efficiency (PCE) (15.3%) and an outstanding fill factor (FF) (0.771) that are superior to the IT-4Cl-based device (PCE = 12.6%, FF = 0.758). The ThPy4-based device realizes the lowest energy loss and the smallest optical band gap, and the ternary PSC device based on PM6:BTP-eC9:ThPy4 exhibits a PCE of 18.43% and a FF of 0.802. Overall, this work sheds light on the great potential of thieno[3,2-b]pyrrole-based SMAs in realizing low energy loss and high PCE.
Keywords:thieno[3,2-b]pyrrole   small-molecule acceptors   energy loss   intramolecular non-covalent interactions   polymer solar cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号