摘 要: | 本刊1992年第1期《用函数的凹凸性证明不等式竞赛题》中的例1解答有误,现摘录如下: 例1 设n为自然数,a、b为正实数,且满足a+b=2,则1/1+a~2/+1/1+b~2的最小值是 (1990年全国高中数学联赛试题) 解:设f(x)=1/1+x~2,容易证明f(x)在R~+上是凹函数,由性质得 1/2[f(a)+f(b)]≥f(a+b/2)=f(1).(*)即 1/2(1/1+a~n+1/1+b~n)≥1/2, 1/1+a~n+1/1+b~n≥1/2,当a=b=1时等号成立. ∴1/1+a~n+1/1+b~n的最小值是1. 上面所得的结果是对的,但解法却是错的,其实,对n≥2,f(x)=1/1+x~R并非R~+上的凹函数.因通过计算可得
|