对一个不等式的探究 |
| |
作者姓名: | 贾玉友 |
| |
作者单位: | 江苏省新沂市教师进修学校,221400 |
| |
摘 要: | 文 [1]将不等式 :设a1,a2 ,a3,a4 ∈R ,求证 :a31a2 a3 a4 a32a3 a4 a1 a33a4 a1 a2 a34a1 a2 a3≥ (a1 a2 a3 a4 ) 212 ,推广为 设a1,a2 ,a3,… ,an ∈R ,且a1 a2 a3 … an =s.则有a31s -a1 a32s -a2 … a3ns -an ≥ s2n(n - 1) (n ≥ 3)(1) 笔者通过对不等式 (1)的探究 ,得到以下命题 设ai ∈R (i =1,2 ,… ,n ,n≥ 3) ,且∑ni=1ai =s.如果m ,k满足下列条件之一 :(1)k=0 ,m≥ 1;(2 )k=m≥ 1或k=m ≤ 0 ;(3)k>0 ,m ≤ 0 ;(4 ) 0 <k≤ 1,m…
|
关 键 词: | 不等式 性质 柯西不等式 平均值不等式 |
本文献已被 CNKI 维普 万方数据 等数据库收录! |
|