首页 | 本学科首页   官方微博 | 高级检索  
     


Learning a merge model for multilingual information retrieval
Authors:Ming-Feng Tsai  Hsin-Hsi Chen  Yu-Ting Wang
Affiliation:Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan
Abstract:This paper proposes a learning approach for the merging process in multilingual information retrieval (MLIR). To conduct the learning approach, we present a number of features that may influence the MLIR merging process. These features are mainly extracted from three levels: query, document, and translation. After the feature extraction, we then use the FRank ranking algorithm to construct a merge model. To the best of our knowledge, this practice is the first attempt to use a learning-based ranking algorithm to construct a merge model for MLIR merging. In our experiments, three test collections for the task of crosslingual information retrieval (CLIR) in NTCIR3, 4, and 5 are employed to assess the performance of our proposed method. Moreover, several merging methods are also carried out for a comparison, including traditional merging methods, the 2-step merging strategy, and the merging method based on logistic regression. The experimental results show that our proposed method can significantly improve merging quality on two different types of datasets. In addition to the effectiveness, through the merge model generated by FRank, our method can further identify key factors that influence the merging process. This information might provide us more insight and understanding into MLIR merging.
Keywords:Learning to merge   Merge model   MLIR
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号